文章介绍所有钙钛矿叠层太阳能电池(PTSC)都有望克服单结钙钛矿太阳能电池(PSC)的肖克利-奎塞尔极限。然而,由于广泛的薄膜缺陷、界面退化和相分离,宽带隙(WBG)子电池会遭受较大的光电压损失
钙钛矿发光二极管(PeLED)的发展面临关键瓶颈:卤素空位缺陷显著制约器件性能,而传统钝化策略在抑制缺陷的同时易引发结构失稳并导致体系复杂化。鉴于此,中国科学院半导体研究所张兴旺&游经碧在
I2”的文章。本研究提出基于挥发性碘(I₂)添加剂的碘空位调控策略。该工作通过引入I₂创造富碘环境,其自发转化为I⁻的特性可精准钝化碘空位缺陷,同时凭借自身挥发性避免残留杂质对晶格的干扰。研究表明
屋顶光伏组件大面积烧毁;2024 年底 杭州滁州基地光伏设施突发大火,现场浓烟密布。行业数据显示,此类事故多集中于工商业屋顶、高架等场景,高温暴晒下的设备老化、线路故障及安装缺陷成为主要诱因。尽管这些
, doi: 10.1126/science.adt5001“与传统真空闪蒸工艺相比,LAD技术攻克了结晶过程不可控的难关,使薄膜残留溶剂减少90%,能够减少钙钛矿表面缺陷,优化结晶形态,从根本上
,发挥数字赋能价值在技术支持系统建设运维方面,地调负责一体化技术支持系统主站和地区调度数据网的运维及故障处理;县调负责终端远程设备、电源等设备的巡视以及终端设备、软件一般性故障处理。在OMS系统缺陷
处理方面,调度中心统一负责地县调业务融合OMS系统缺陷处理。对于地区无法自行解决的系统缺陷,调度中心自动化人员作为“唯一出口”责任人。在EMS系统(Energy
Management
抑制SnO2与钙钛矿界面的缺陷对于制备具有商业化所需寿命和效率的大面积正式钙钛矿太阳能电池至关重要。鉴于此,西安交通大学王栋东课题组在期刊《Angew》上发文“Employment
,-NH2)和尿素(-NH-CO-NH2)基团,可作为分子桥调控SnO2/钙钛矿埋底界面。氨基酸基团可以与Sn4+有效配位,钝化SnO2的氧空位缺陷;尿素基团可以与未配位的Pb2+和I-相互作用。这些
芘环之间的π-π相互作用增强了分子的堆积,形成了均匀且致密的SAM层。因此,均匀的PhPAPy有效地减少了钙钛矿与基底的直接接触,改善了界面特性,减少了埋底界面缺陷,并提高了器件的效率和稳定性。使用
最小化了基底与钙钛矿之间的直接接触,降低了缺陷密度,并抑制了非辐射复合,从而提升了器件性能。因此,采用这种HTL的钙钛矿太阳能电池实现了经过认证的稳定功率输出(SPO)效率为26.12%,反向扫描效率为
工作也处于起步阶段。风能和太阳能的互补特性,决定了风光互补发电在一定程度上克服了风能、太阳能的供电不均衡缺陷,通过风光互补发电,可以有效地减小新能源发电的波动率,降低对电网的冲击,维持整个电网安全、平稳
耗散机械应力来提高机械强度,并通过缺陷钝化来提高钙钛矿基底界面的电子质量。所得到的PSC表现出26.8%的高功率转换效率(PCE)(认证为26.6%)。由于钙钛矿成分更加稳定,器件在85
°C下
之间形成了多维相互作用,从而更有效地分布和消散由极端温度波动引起的机械应力。3. 缺陷钝化:PTPY的吡啶侧链设计不仅增强了机械稳定性,还通过形成新的Pb-N键部分补偿了Pb原子的八面体配位缺陷,从而
性能,特别是抑制了长距离电子扩散,优化了电子的快速迁移与提取。通过这种多孔导电层的设计,研究进一步揭示了电子注入与缺陷钝化之间的协同作用,显著提升了光电性能。在n-i-p型结构的钙钛矿太阳能电池中,研究