的情况来看,金刚线切多晶改造直接降本0.5-0.8元/片,阿特斯等企业的黑硅加工成本控制在0.1元/片,功率增益提升至5瓦。按照当前的组件价格计算,黑硅组件有0.05元/瓦的增益,而成本只上升
类型的的黑硅绒面结构的不同,正银浆料在不同黑硅绒面上的表现也不相同。干法黑硅和普通多晶相比,对浆料的要求区别不大。湿法黑硅相比正常多晶绒面,使用普通正银的主栅焊接拉力可能丢失大于50%,更严重的情况下,细
明显; 2) 腐蚀后的减反膜厚度可以使正面电极与硅基体形成较好的欧姆接触; 3) 电极的焊接拉力完全满足要求,虽然彩色多晶硅太阳电池的效率比传统蓝色多晶硅太阳电池的效率低了很多,但在封装之后,彩色多晶硅光伏组件的功率有明显的增益。
。
但是,如果气温太高,空气湿度太大,再加上强降雨雷暴等恶劣天气,往往会给光伏电站带来负面影响甚至安全隐患。
那我们应该怎么办呢?
一、保持通风
不管是组件还是逆变器,配电箱都要保持通风,确保
空气流通。对于屋顶光伏电站的组件,重要的是,不要为了多要发电量,而不合理地安排光伏电站组件的排布,造成组件和组件之间互相遮挡,同时影响散热通风,导致发电量低。
所以,如果有人忽悠你在有限的面积上多安装几块
大包,不仅浪费价格不菲的EVA胶膜和TPT背板,还污染环境。组件自身粘上的EVA胶则需要大量人工来清洁,当时除了手工焊接电池工序的员工比较多以外,整个组件生产线就数清洁组件的员工最多了,用酒精溶解、用
侧面反射到组件正面玻璃的内表面,二次反射回电池片表面,这部分的光线就贡献了一部分的组件功率输出。MBB多主栅技术是通过多根铜丝进行输出分流降低电流,也面临铜丝和电池片虚拟主栅线的焊接电阻的稳定性
问题。因为常规组件的焊接都是面焊接,现在只能是虚拟主栅线的少量焊盘的焊接,其他都只是十字交叉的点焊接,这样组件的内阻就表现出一定的损耗,在长期的TC和其他老化方面就面临些挑战。这也是这个工艺的短板,需要通过
,稍有差池就会造成烧穿p-n结漏电(温度过高)或接触电阻过大(温度偏低);
(4)电镀Ag与焊接带之间的粘合力较小,做成组件后容易出现脱焊现象,目前还没有很好的解决方案,通过改进电镀电解液来改善电镀Ag
印刷工艺都较难做到1mm的栅线距离,所以浅扩层方阻不能高于100/sqr。
同样,由于最后需采取LIP对栅线进行增厚,也需解决电镀Ag与焊接带之间粘合力较小的问题。
另外,inkjet
12BB,目前多主栅厂商更多的会选择9BB或者7BB。 而今年展会最大的特点之一是高密度组件封装技术,即在组件面积增加有限的情况下,通过叠瓦、拼片、板块互联、无缝焊接等技术尽可能地封装更多电池片,以
较高。
二、四主栅IBC电池
其特点是可使用常规焊接的方法制作组件,精度要求低,无需专门设备,适用性强。但在电池制备过程中需要印刷绝缘胶和主栅,电池工序相对复杂。
三、点接式IBC电池
其特点是
,因为它不仅影响电池性能,还直接决定了IBC组件的制作工艺。按照电极设计的不同,中来IBC电池包含三种主要类型,如图2所示。
▲图2. 中来光电IBC电池背面电极设计图
一
形成的欧姆接触的温度区间较小,稍有差池就会造成烧穿p-n结漏电(温度过高)或接触电阻过大(温度偏低);
(4)电镀Ag与焊接带之间的粘合力较小,做成组件后容易出现脱焊现象,目前还没有很好的解决方案
plating (LTP)等。与激光相比,这些印刷工艺都较难做到1mm的栅线距离,所以浅扩层方阻不能高于100/sqr。
同样,由于最后需采取LIP对栅线进行增厚,也需解决电镀Ag与焊接带之间粘合力较小的问题
。
2)较低的温度系数:HJT电池的典型温度数为-0.29%,远低于常规晶硅电池的-0.45%。高温时,发电量能高出普通组件8~10%。
3)高光照稳定性:在HJT太阳能电池中不会出现非晶硅
)工艺要求严格。要获得低界面态的非晶硅/晶体硅界面,对工艺环境和操作要求也较高;
3)需要低温组件封装工艺。由于HJT 电池的低温工艺特性,不能采取传统晶体硅电池的后续高温封装工艺,需要开发适宜的