钙钛矿作为CQD的核心材料崭露头角,并在光电应用中表现出比传统金属硫化物更有前景的特点。在基于钙钛矿的CQDs(PQDs)中,通过纳米尺度的配体辅助表面应变实现了环境稳定的光活性α相钙钛矿晶体。此外,通过
第一作者:Havid Aqoma, Sang-Hak Lee.通讯作者:Sung-Yeon Jang通讯单位:韩国蔚山国立科学技术研究院(UNIST)研究亮点:1. 解决了用于太阳能电池的有机PQD
一流企业中的年轻精英,努力打造技术领先、品质卓越的太阳能产品。█ 史卫利无锡帝科电子材料股份有限公司 董事长史卫利先生作为知名微纳米科技专家,他回国后参与创建企业,历经3年蛰伏,带领团队成功开发出一系列
,有朱共山的光伏行业,从不缺乏温度。底层推力,温暖江湖。█ 沈浩平TCL中环新能源科技股份有限公司 总经理2023年是沈浩平先生从事晶体硅的四十年。四十年间,沈浩平先生多次开创行业先河,对于晶体硅技术
,相比于DCP,TCP制备的CsPbIBr2钙钛矿薄膜表面粗糙度从24.1纳米减少到21.7纳米。图3. 基于DCP和TCP的最佳太阳能电池性能:(a) 在100 mW cm−2(AM 1.5G)下
) Jangwon Seo&Seong Sik Shin研究团队于Nature刊发通过载流子管理改善钙钛矿太阳能电池性能的研究成果。量子点:太阳能电池效率新起点量子点(QD) ,也称为半导体纳米晶体,是几
(HZB)制备的硅钙钛矿串联电池效率高达
32.5%,经意大利认证机构欧洲太阳能 测试装置(ESTI)测试创下新的世界纪录。此项记录在两年内三次刷新,2021 下半 年,HZB
团队通过周期性纳米
较大的提升空间:太阳能电池的转换效率由三个参数决定:开路电压(VOC)、短路电流(JSC) 和填充因子(FF)。其中,VOC
是多晶体薄膜太阳能电池中最难改善的参数。这是因
为多晶体薄膜电池相比
形成了前后两面都具有纹理结构的钙钛矿/晶体硅串联太阳能电池(DOI:10.1038/s41563-018-0115-4)。尽管这些串联电池由于正面金字塔纹理而具有较高的光电流,但非辐射复合损失仍然很大
。钙钛矿的一个挑战是迄今为止大多数报告的顶表面钝化方法不能直接适用于微米级纹理,因为它们涉及从液体溶液中沉积纳米级有机层。并且,这些加工路线通常在这种表面纹理上产生非均匀(不完全)涂层。鉴于此,洛桑联邦
钙钛矿太阳能电池(PSCs)因廉价的材料成本、易于制备大面积器件以及较高的光电转换效率等优点而备受关注。SnO2具有高透过率、高电子迁移率、适宜的能级、良好的紫外辐照稳定性和易于低温加工等特点,是
高等研究院开发了简单有效的策略,通过在SnO2纳米颗粒中加入草酸甲脒(FOA)来同时抑制SnO2体相和表面缺陷以及钙钛矿埋底界面处FA+/Pb2+相关缺陷,实现了有效的靶向缺陷钝化。相关研究成果以
钙钛矿太阳能电池(PSCs)因廉价的材料成本、易于制备大面积器件以及较高的光电转换效率等优点而备受关注。SnO2具有高透过率、高电子迁移率、适宜的能级、良好的紫外辐照稳定性和易于低温加工等特点,是
高等研究院开发了简单有效的策略,通过在SnO2纳米颗粒中加入草酸甲脒(FOA)来同时抑制SnO2体相和表面缺陷以及钙钛矿埋底界面处FA+/Pb2+相关缺陷,实现了有效的靶向缺陷钝化。相关研究成果以
高速沉积和高性能纳米晶硅空穴传输层,展示了优良的光电性能,这是迄今为止所有晶体硅太阳能电池中性能最好的。”隆基研发团队联合中山大学高平奇教授和荷兰代尔夫特理工大学Olindo Isabella教授的研发
时代,协鑫颗粒硅通过体系化、标准化、数字化、集成化、智能化、模块化复制实现了产能高速扩张。”兰天石在协鑫科技2022年业绩会上曾表示,“目前颗粒硅品质正在由太阳能级向电子级快速爬升,全面满足N型时代
、IDG资本等明星机构领投;2023年初,国际资管巨头贝莱德举牌协鑫科技。以颗粒硅为主线,辅以钙钛矿和工业纳米硅的布局,该公司“一体两翼”的业务结构模式成形。当总结目前公司的竞争力时,兰天石回应道