在倒置钙钛矿太阳能电池中,无掺杂小分子空穴传输材料常因溶液加工过程中的界面降解而导致电荷提取效率下降和器件稳定性受损。高效稳定性能:器件效率达23.52%,连续光照600小时后性能保持94%,推算T80寿命长达1951小时,远超传统HTM器件。
RS-2的功函数更深,深价带能级更利于空穴提取四、串联堆叠:颠覆性器件性能1. 高效单结钙钛矿电池冠军效率:26.3%(有效面积4 mm²)关键参数:开路电压(Voc):1.19 V短路电流(Jsc
均匀性突破效率天花板:叠层电池效率突破34%里程碑长效稳定性保障:2000小时高温工作验证可靠性这项研究通过分子设计创新与表征技术突破,解决了钙钛矿电池中空穴传输层的导电性、稳定性和均匀性难题。双自由基
苏州大学刘江等人设计了一种不对称的SAM(命名为HTL201),其特征是锚定基团和间隔物位于咔唑核的侧面,用作钙钛矿/硅TSC的空穴选择性层(HSL)。当与具有氮键合膦酸基团的对称SAM相比时
/硅TSC中充当HSL。HTL201的垂直配置可以最大限度地减少空间位阻,并增强其与TCO复合层的相互作用,从而提高TCO基板上的覆盖率。钙钛矿和HTL201之间有利的能级排列有助于有效的空穴提取,并
&李振国&徐希翔&何博&苏大刘江等于Nature发文,设计了一种不对称的自组装单分子层(命名为HTL201),其特点是在咔唑核心两侧分别连接有锚定基团和间隔基团,可作为钙钛矿/硅串联太阳能电池的空穴选择性
)对照组和靶组的膜中电子和空穴传输的示意图。在异质结界面处的电场矢量中。图4. 器件性能表征。a)目标组和对照组具有1.68 eV带隙的器件的冠军功率转换效率(PCE)。B)目标组和对照组的器件的EQE
测试显示:RS-2极大提升了空穴提取效率,降低了非辐射复合。性能表现亮眼基于RS-2的PSC小器件效率达26.3%,模块效率达23.6%(10 cm²);在封装条件下,RS-2器件于45°C连续跟踪
”协同策略,实现高稳定+高组装质量+高空穴迁移率;引入SECCM-TLCV等前沿纳米电化学技术,定量揭示自由基分子的电荷传输机制;器件在效率、稳定性与大面积适配性三方面均取得优异成绩,展现产业化潜力。结语
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约
90% 的初始效率。一、研究背景与目的倒置钙钛矿
光伏技术。近年来晶硅-钙钛矿叠层太阳电池取得重要进展,但宽带隙钙钛矿顶电池仍然存在显著的界面非辐射复合问题,主要包括钙钛矿上界面与电子传输层的界面复合问题以及空穴传输层在绒面衬底上覆盖性及均匀性不佳引起的
从实验上证明双结叠层太阳能电池效率超过了单结S-Q理论效率极限,具有里程碑意义。针对空穴传输层所在的界面复合问题,隆基团队联合苏州大学开展研究,在新型有机自组装分子材料(SAM)设计及晶硅-钙钛矿叠层
)会激发电子-空穴对,在内建电场作用下分离形成直流电。整个过程仅涉及光子能量转换,不产生任何核反应或化学变化,其电磁辐射属于非电离辐射范畴(频率300GHz),能量不足以使原子或分子电离。2. 安全标准
功率下,将空穴传输NiOx层RF溅射在织构化硅的表面上10 min。NiOx层的最终厚度为30 nm。2PACz 1 mg/mL于乙醇,3000rpm 30s旋涂,100 ℃退火10 min;2.