论文概览华南理工大学陈军武、张连杰团队设计并合成了三种硅氧烷-卤代噻吩添加剂,成功应用于D18:L8-BO体系,实现了优异的纤维状形貌和空气中高性能加工。技术亮点分子设计创新:将疏水硅氧烷单元与卤代噻吩结合,兼具形貌调控与湿度耐受功能。TEM图像进一步证实纤维状形貌,Cl-Th-SiO样品结构最清晰。结论展望本研究通过理性设计硅氧烷-卤代噻吩添加剂,成功实现了高性能、高湿度耐受的OSC活性层加工。
本文大连理工大学贺高红和姜晓滨等人提出了一种基于多级微流控的外延生长策略,实现了对CsPbBrNCs结构参数和核壳构型的精确多级控制。通过利用微通道内的准一维热流场,成功解耦了CsPbBr的成核与生长过程。进一步在CsPbBr上外延生长无铅CsSnBr双钙钛矿壳层,形成I型能带对齐的核壳异质结构。所得核壳纳米晶表现出显著增强的光学性能和稳定性,在环境暴露75天后仍保持完整的晶格结构。
近年来,短波红外有机光电探测器因其柔性可加工、波段可调等优势,在生物医学监测与高速光通信领域展现出巨大应用潜力。该研究通过分子设计与器件工艺协同优化,成功构建出具有超低暗电流与超高探测率的短波红外有机光电探测器,不仅在微秒级快速响应和宽带宽性能上表现卓越,还在无袖带血压监测与实时光通信等应用中展现出优异的稳定性与实用性。
在采用介观TiO/ZrO/碳结构优化大规模制备的可印刷碳基钙钛矿太阳能电池中,滴铸成膜和无空穴传输层的特性导致钙钛矿结晶不理想,限制了其光电转换效率,并阻碍了有效的电荷传输和提取。最终p-MPSC实现了20.8%的PCE和1.067V的开路电压,这是迄今有机-无机杂化p-MPSCs报道的最高VOC。创纪录的高开路电压与效率:实现p-MPSC器件20.8%的PCE和1.067V,为有机-无机杂化碳基钙钛矿电池的最高开路电压,同时大面积组件效率达17.1%。
针对钙钛矿太阳能电池(PSCs)埋底界面处载流子传输与非辐射复合损失的关键问题,成都理工大学等单位的研究团队创新性地筛选出一系列二磷酸路易斯碱分子,提出采用N,N-双(二苯基膦)胺(N-DPPM) 作为界面功能分子,调控钙钛矿沿(100)/(200)低米勒指数晶面择优生长。N-DPPM凭借适中烷基链长度(n=1)与多重活性位点,不仅可与欠配位Pb²⁺配位、通过N–H键与FA⁺作用,还能显著提升异质界面能(γ_HI)、降低晶界能(γ_GB),从而平坦化晶界沟槽、减少纳米级物理空隙、释放残余应力。基于该策略,窄带隙(1.55 eV)、大面积(0.5 cm²)和宽带隙(1.73 eV)倒置PSCs分别实现了26.80%、26.18%和20.59% 的优异光电转换效率,且未封装器件在长期存储、热老化和光浸泡条件下表现出卓越稳定性。
埋地界面的电荷传输和非辐射复合损耗是限制钙钛矿太阳能电池效率和稳定性的重要因素。这些特征促使沿着/晶面形成高质量的钙钛矿薄膜。有趣的是,这些取向的低米勒折射率晶面的异界面能量大约增加了两倍,晶界能量大约减少了两倍,使晶界沟变平,从而减少了纳米级物理空隙并释放了残余应力。晶界沟槽平坦化:AFM显示晶界角从151.6°增至172.4°,表面粗糙度降低64%,消除纳米级物理空隙并释放残余应力。
埋底界面处的电荷传输和非辐射复合损失是限制钙钛矿太阳能电池效率和稳定性的关键因素。
具有可调带隙的宽带隙(WBG,≥1.60 eV)混合卤化物钙钛矿对于推进叠层光伏(PV)至关重要。然而,宽带隙钙钛矿太阳能电池性能损失严重,通常直接与卤离子迁移(HIM)有关。虽然抑制卤离子迁移的策略改善了器件性能,但卤离子迁移与器件性能之间的潜在关系仍然模糊且存在争议。
由于残余拉伸应变的存在以及钙钛矿固有的脆性和薄膜质量问题,柔性钙钛矿太阳能电池(f-PSCs)在稳定性方面面临持续挑战。
8月11日,深圳理工大学党委书记朱迪俭率材料科学与能源工程学院专家团队赴通威考察交流,双方签署《实践教学基地合作框架协议》,开启校企合作新篇章。随后在双方领导见证下,通威股份人力资源部副部长刘晓慧与深圳理工大学材料科学与能源工程学院副院长王大伟代表双方签约。座谈现场朱迪俭书记在签约仪式上表示,此次校企战略合作是学校贯彻落实国家创新驱动发展战略、深化产学研协同创新的重要实践举措。