有机太阳能电池

有机太阳能电池,索比光伏网为您提供有机太阳能电池相关内容,让您快速了解有机太阳能电池最新资讯信息。关于有机太阳能电池更多相关信息,可关注索比光伏网。

隆基创新:以终为始来源:隆基绿能 发布时间:2025-06-09 19:32:55

6月10-13日,2025年SNEC将在上海国家会展中心如约而至。此前的5月26日,世界“太阳能之父”马丁・格林教授团队发布了最新一期的《太阳能电池效率表》(Solar Cell
Efficiency Tables, Version 66)。该报告收录了截至2025年全球太阳能电池技术的最新效率数据,再次成为行业技术发展的风向标。其中,隆基BC技术领域的突破尤为引人瞩目,HBC电池

Moungi G. Bawendi诺奖团队最新钙钛矿太阳能电池综述:从ABX₃材料到电池商业化来源:太阳能电池札记 发布时间:2025-06-09 14:31:23

诺贝尔奖获得者Moungi G. Bawendi的团队,2025年在顶级期刊《Nature Reviews Methods Primers》上发表了一篇关于钙钛矿太阳能电池的重磅综述,介绍了从
钙钛矿(ABX3)材料的晶体组成到钙钛矿太阳能电池(Perovskite Solar Cells,PSCs)商业化面临的挑战,涵盖配方设计、界面工程、薄膜制备和电池表征等一系列内容,文章排版清楚而且

麻省理工Joule实验首次硅太阳能电池量子效率突破极限138%来源:太阳能电池札记 发布时间:2025-06-09 11:50:50

散失。  近日关于光子倍增方向,麻省理工学院(MIT)领衔的国际团队在激子裂变增强硅太阳能电池领域取得重大突破。他们创新性地利用有机分子材料,成功将硅电池的峰值电荷生成效率提升至(138±6)%,实现
  硅太阳能电池因其技术成熟和高效稳定,目前在全球光伏市场中占据主导地位。然而,单结硅电池的理论效率极限(约29%)一直是制约其进一步发展的瓶颈---当光子能量高于硅的带隙时,多余的能量会以热能形式

北京理工大学:两步法正式钙钛矿电池效率26.13%!钙钛矿从n型向弱n型转变策略来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-06 14:45:03

,在 n-i-p 结构的钙钛矿太阳能电池(PSCs)中,大约 80% 的光生载流子是在电子传输层(ETL)与钙钛矿界面起始的 300 nm 范围内生成的,这表明 ETL/钙钛矿界面处的有效
溶于1 mL DMF/DMSO混合溶剂(体积比9:1),70℃搅拌过夜。有机胺盐溶液:按FAI:MACl质量比90 mg:15 mg溶于异丙醇(IPA),70℃搅拌30分钟。表面钝化层溶液:5 mg

南京工业大学王贞&王建浦最新AEL:异质成核诱导钙钛矿太阳能电池向上结晶来源:印刷钙钛矿光电器件 发布时间:2025-06-06 08:56:16

形成具有低晶界缺陷的单片钙钛矿晶粒对于实现高性能钙钛矿太阳能电池至关重要。在底面引入二维(2D)钙钛矿晶种是一种简便易行的方法,可诱导向上定向结晶并形成单片晶粒。然而,二维钙钛矿中的大分子有机阳离子
钝化SnO₂和钙钛矿的界面缺陷,避免了传统二维钙钛矿种子中因大有机阳离子导致的载流子传输阻碍,实现了高效的界面载流子提取和传输。3.高性能器件稳定性提升:基于PPH修饰的钙钛矿太阳能电池实现了25.3

南昌大学陈义旺 AM :19.58%!分子互锁界面助力可拉伸有机光伏效率创新高!来源:钙钛矿人 发布时间:2025-06-05 09:08:13

文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程

四川大学李鸿祥&苏州大学李耀文 Angew:分子协同策略实现无掺杂空穴传输层,助力全印刷高性能钙钛矿太阳能电池组件来源:印刷钙钛矿光电器件 发布时间:2025-06-05 08:58:02

实现大面积、高均匀性和高重复性的无掺杂有机空穴传输层(HTL)沉积,是推动全印刷n-i-p钙钛矿太阳能电池组件商业化的关键。然而,传统聚合物空穴传输材料(HTM)在印刷过程中表现出非牛顿流体特性,其
供体单元、苯并噻二唑受体单元和BDT弱供体的协同作用,实现了高空穴迁移率和优化的能级排列,显著提升了界面电荷提取效率。3.大面积全印刷高性能钙钛矿太阳能电池模块通过MC策略成功制备了大面积(15.64

海南大学孙萍萍&南科大徐保民&Kyaw最新AM:通过原位聚合粘合桥接共自组装的单层和钙钛矿以增强倒置钙钛矿太阳能电池的稳定性来源:印刷钙钛矿光电器件 发布时间:2025-06-04 09:59:35

战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM 和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
阳离子在底部界面的聚集促进了通过巯基端基的原位聚合,在钙钛矿/SAM 界面形成POL-AVM 聚合物。这种聚合物增强了界面粘附力,调节钙钛矿结晶,并通过多个氢键强烈锚定有机阳离子来增强结构

发光三苯胺受体材料问世,有机光伏器件能量损失大幅降低!Energy Environmental Science来源:半导体技术情报 发布时间:2025-05-29 16:28:04

高非辐射复合能量损失(ΔEnr)的持续挑战仍然是提高有机太阳能电池(OSC)功率转换效率(PCE)的关键瓶颈。近日,北京航空航天大学孙晓波、孙艳明、林雪平大学Zhang Huotian通过在末端

新型多功能空穴选择层提高了钙钛矿-有机叠层太阳能电池的效率和耐用性来源:钙钛矿材料和器件 发布时间:2025-05-27 16:49:25

蔚山国立科学技术研究所(UNIST)、蔚山大学和群山国立大学的研究人员开发了一种多功能空穴选择性层(mHSL),旨在显着提高钙钛矿/有机叠层太阳能电池(POTSCs)的性能。据报道,这种薄膜材料能够
以吸收更广的阳光,从而提高整体能量转换效率。其中,钙钛矿和有机材料的组合特别有前途,可用于生产适用于可穿戴设备和建筑集成光伏的薄而灵活的太阳能电池板,使其成为下一代能源之一。研究团队通过混合两个自组