本文摘要 在晶体硅太阳能电池中,金属-半导体接触区域存在严重的复合,成为制约晶体硅太阳能电池效率发展的重要因素。隧穿氧化层钝化金属接触结构由一层超薄的隧穿氧化层和掺杂多晶硅层组成,可以显著降低金属
澳大利亚国立大学(Australian National University)的研究人员正在研究如何利用氢原子来改善钝化接触太阳能电池掺磷多晶硅(poly-si)薄膜的性能。
科学家们相信,在
掺磷多晶硅层中,氢原子可以被操纵用来提高钝化接触结构的质量,因而他们将氢原子应用于电池的表皮层,这一层的厚度比人类的头发薄1000倍,能发出非常独特的光。研究人员很快意识到,氢原子的存在极大地改变
极上使用钝化电子选择n +型多晶硅氧化(POLO)触点,在正接触极上使用孔选择P+型POLO触点。
POLO触点的高选择性是实现高效率的一个关键因素,背部叉指模式使用了这种触点,能够最大限度地减少
了项目合作伙伴Centrotherm和瓦克化学的贡献。 Centrotherm在低压化学气相沉积反应器中沉淀了多晶硅层,瓦克化学贡献了硅片的高温加工知识。
ISFH的研究获得了德国联邦经济和能源部
效率最高的电池。 该电池采用交错背接触结构(IBC),正负电极均采用多晶硅氧化层(POLO)技术实现钝化接触。普通双面电极的电池在使用钝化接触(包括HIT在内)时,虽然提高了钝化效果和电压,但由于钝化
显示,2019年初,国内PERC产能已经达到了60GW左右,而随着单晶PERC产能的释放,国内PERC产能到2019年底将达到100GW以上。
PERC工艺的关键在于给电池背面加钝化层,减少效率损失
,受到了行业的焦点关注。TOPCon技术是在电池背面制备一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,二者共同形成了钝化接触结构。该结构可以阻挡少子空穴复合,提升电池开路电压及短路电流。
在工艺方面
,2019年初,国内PERC产能已经达到了60GW左右,而随着单晶PERC产能的释放,国内PERC产能到2019年底将达到100GW以上。
PERC工艺的关键在于给电池背面加钝化层,减少效率损失
焦点关注。TOPCon技术是在电池背面制备一层超薄的隧穿氧化层和一层高掺杂的多晶硅薄层,二者共同形成了钝化接触结构。该结构可以阻挡少子空穴复合,提升电池开路电压及短路电流。
在工艺方面,TOPCon
,选择性发射极电池是比较理想的选择,即在电极接触部位进行重掺杂,在电极之间位置进行轻掺杂。
传统结构的太阳能电池n+扩散层一般在40-50/sqr,而SE结构的太阳电池的浅扩散方阻一般在80-100
复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率;
另外,低表面掺杂浓度意味着低表面态密度,这样也可提高钝化效果。
(3
方向可以发现,几乎包括了所有的太阳能电池改进方向。
太阳电池发电原理:太阳电池激子产生、分离、传输和复合的普适性原理;
电池工艺:表界面钝化和修饰技术;
新型材料:新型宽光谱、高吸收效率的吸光材料
关键技术及成套技术研发(共性关键技术类)
研究内容:为探索大面积太阳电池制备技术,开展稳定大面积钙钛矿电池关键技术及成套技术研发。具体包括:大面积薄膜制备技术;大面积薄膜缺陷调控技术;大面积功能层界面
和填充因子的需要,选择性发射极电池是比较理想的选择,即在电极接触部位进行重掺杂,在电极之间位置进行轻掺杂。
传统结构的太阳能电池n+扩散层一般在40-50/sqr,而SE结构的太阳电池的浅扩散方阻
钝化效果。
(3)改善光线短波光谱响应,提高短路电流和开路电压
对于AM1.5G而言,约20%能量的入射光的吸收发生在扩散层内,所以浅扩散可以提高这些短波段太阳光的量子效率,提高短路电流;
同时
随着行业高效技术以叠加的方式不断往纵深方向发展,电池、组件厂与配套的供应链企业(如设备、材料等)之间的合作愈加紧密,而导电浆料(正面、背面银浆,背面铝浆)作为提升晶硅太阳能电池转换效率与组件产品
多晶技术、不同背钝化工艺的PERC LDSE技术、n-TOPCon钝化接触技术等的大规模量产。未来,高效电池与组件技术不断涌现、百花齐放,多样化发展的趋势会更加明显。但从行业长期健康、有序发展的角度