韩国全南大学的科学家采用联合沉淀法为太阳能电池发明出一种独特的钙钛矿层。
这种钙钛矿太阳能电池以卤化铅为光吸收剂,以纳米多孔氧化镍为空穴传输材料(HTL),以甲胺碘化铅和甲基溴化铅为钙钛矿层,还有
一层有机/无机氧化锌化合物电子传输层(ETL)来防止钙钛矿层暴露在空气中,从而避免电池退化。
根据发表在期刊《当代材料》上的文章,这种电池在初步测试中的转化效率为19.1%,使用五个月之后转化效率仅
芬兰阿尔托大学的研究人员提出了一种测试钙钛矿和染料敏化太阳能电池的新型简化方法。
研究人员解释说,他们的快速低阈值摄影方法甚至可以检测到钙钛矿电池中轻微老化的部位,比光学测量结果更可靠,而且比更
电池结构和电解质,使太阳能电池寿命延长十倍以上。
阿尔托大学此前的研究由于样本量少和缺乏关于环境条件如温度,湿度等的详细信息,大多数钙钛矿太阳能电池的老化测试都不能提供准确的数据。该研究小组表示,将
?
诸葛军:多年来,公司一直专注于高质量的、可靠的组件生产,近期开始大幅增加高效电池片的制造产能。
随着美国和欧盟开征双反税,自2015年起,我们开始尝试组件产能外迁。最近,太阳能电池生产也开始外扩
太阳能电池厂的消息,包括200MW半切电池组件。我们的电池片厂,将是非洲大陆首家光伏电池片工厂。这些都是我们与南非工业发展公司(IDC)共同开发的,预计将于今年三季度开始商运。目前在南非,赛拉弗已经
台湾中央大学光伏效率验证实验室(PVEVL)引进了新一代光驱动光伏(NLPV)的验证方法和程序,提高了该机构太阳能电池性能测试的能力和范围这其中包括了有机、钙钛矿和量子点太阳能电池的测试。 在室内
。
3. 钙钛矿太阳能电池的效率可达24.02%(认证效率23.48%),目前文献报道最高值。
一、PSC亟待解决的关键问题
目前,最高效率的钙钛矿太阳能电池(PSC)均是有甲脒碘化
铅(FAPbI3)基钙钛矿作为主体,其他阳离子为辅的成分组成。在钙钛矿材料中,FAPbI3材料具有1.48 eV的带隙更接近于单结太阳能电池的最佳值,并光谱吸收延伸到840 nm,然而,FAPbI3相稳定性
过程中辐照度和温度会随着昼夜和季节的变化而变化。基于钙钛矿太阳能电池响应时间很慢这一现状,这些因素显得尤为重要。
另一方面,户外测试要求设备严密封装,以避免其受到恶劣天气的影响。但是,封装主要解决寄生
金属卤化物钙钛矿被发现适合作为光伏材料仅有十年的时间。如今,钙钛矿太阳能电池已经发展到几乎和最好的传统硅基电池一样高效。如果它们能够以印刷的方式简单、快速地生产,将有很大希望成为高效、低成本的电池
加速实现产业化,为光伏发电带来新的成本下降路径。 其次,从建立新结构太阳电池研究及测试平台来看,其对光伏电池技术有多重作用。一方面,随着太阳能电池技术的多元化发展,技术方向越来越多样,但是相关的设计、测试
提升0.2%-0.3%左右,根据Energy Trend关于主要太阳能电池制造厂商PERC与SE产能数据统计,截至2018年底,主要光伏电池厂商的PERC工艺产能中约77%采用了公司的设备,SE工艺
激光消融技术、激光退火技术等,并且目前公司在上述研发领域已经实现了一定进展。
在光伏领域,帝尔激光可针对国内外客户需求提供定制化、综合化的高效太阳能电池激光加工解决方案及相关配套设备。晶科能源
根据新的LeTID测试标准(2 PfG 2689/04.19),德国莱茵TV为一小组光伏组件供应商首次颁发了LeTID(热辅助光致衰减)证书,又名CID(电致衰减)证书。这一新测试标准已经历了约
关于这些问题的一篇免费技术论文概要。
德国莱茵TV表示,新的LeTID测试旨在于不影响测试条件的严格性和最终结果准确性的前提下,通过简化测试流程显著缩短测试时间。
在SNEC大会上,德国莱茵TV向
Heterojunction with Intrinsic Thin-layer的缩写,意为本征薄膜异质结。该类型太阳能电池最早由日本三洋公司于1990年成功开发,当时转换效率可达到14.5%(4mm2的电池
。
2)较低的温度系数:HJT电池的典型温度数为-0.29%,远低于常规晶硅电池的-0.45%。高温时,发电量能高出普通组件8~10%。
3)高光照稳定性:在HJT太阳能电池中不会出现非晶硅