近日,中国华侨大学的科学家们设计了一种钙钛矿太阳能电池,它利用空穴选择性夹层抑制离子扩散来提高器件的稳定性。离子迁移被认为是钙钛矿太阳能电池不稳定的关键原因。当钙钛矿薄膜中的软晶格和相对较弱的键导致
。研究人员解释说:“在钙钛矿太阳能电池中加入空穴选择性夹层的想法受到质子交换膜 (PEM) 燃料电池的启发,其中 PEM
充当质子导体,同时阻止其他化学物质的扩散。“设计阻止层间离子扩散的内部屏障对于提高
新方法将电池的效率提高了约 15%,同时也使其对环境更加稳定。“尽管光电子特性很有前途,但事实上,由于氯和碘之间的半径不匹配,离子迁移在基于氯化碘的钙钛矿太阳能电池中是不可避免的,”Howlader
) 沉积在氧化铟锡 (ITO) 上,用作前电极。空穴传输层 (HTL)
沉积在吸收器顶部,该材料称为 2,2,7,7-四分体-(N,N-di-4-甲氧基苯氨基)-9,9-螺基芴
一个德国研究小组正在实地测试新的模块概念,可以集成到公路或铁路旁的隔音墙中。他们希望其中一些设计能成为成本效益良好的发电解决方案,应用于新建的隔音墙、改造或附加项目中。德国弗劳恩霍夫太阳能
基础设施或用作附加组件。每个光伏解决方案的摘要如下所列,参考图片见说明文字上方(从左至右)。o 一种组合解决方案,其模块有两个独立的电池组,用于在噪音吸收器的后部和同一面墙的前侧(最左边)采集光线o
来自马来西亚的研究人员开发了一种锡锗基钙钛矿太阳能电池,其潜在效率高达31.49%。通过在钙钛矿吸收器中将锡和锗作为混合B阳离子整合,他们能够通过调节钙钛矿层厚度实现24.25%至31.49%的效率
nm厚的吸收器的效率为31.73%。研究人员计划进一步验证他们的模型,并为未来的研究完善他们的参数。马来西亚的研究人员是如何在太阳能电池中实现高达31.49%的效率的?马来西亚的研究人员通过开发锡锗
钙钛矿界面工程对于提高钙钛矿太阳能电池(PSC)的性能和稳定性至关重要,2D/3D钙钛矿异质结在这方面表现出了特别的前景。然而,由于电荷复合、离子迁移和电场不均匀性,3D钙钛矿光吸收器顶部和底部界面
的缺陷会降低钙钛矿太阳能电池(PSC)的性能和运行稳定性。有鉴于此,阿卜杜拉国王科技大学Randi Azmi,Stefaan De
Wolf等人证明了长烷基胺配体可以在顶部和底部3D钙钛矿界面
1)共添加剂策略可以增强光稳定性,而单独使用MAI和KSCN会导致不利影响。2)三结串联太阳能电池采用共添加剂改性的2.0 eV钙钛矿作为顶部电池吸收器,在1 cm2面积上达到3.04 V开路电压和26.4%的PCE。
伊朗塔比亚特莫达雷斯大学(TMU)的研究人员最近在钙钛矿太阳能电池领域取得了重要突破。他们开发了一种使用单壁碳纳米管(SWCNT)空穴传输层(HTL)的新型电池结构,显著提高了太阳能电池的效率
。钙钛矿太阳能电池因其高效转换太阳能为电能的能力而受到广泛关注。然而,这种电池的稳定性问题一直是阻碍其商业化应用的主要障碍。为了解决这一问题,TMU的研究团队采用了一种创新的方法,即使用硫化铅胶体
Cu2ZnSn(S,Se)4 (CZTSSe) 太阳能电池由地球丰富的材料组成,由于非辐射复合,在实现高功率转换效率 (PCE)
方面面临挑战。这些限制主要源于吸收体主体和异质结界面区域普遍存在
Al2O3
ALD工艺的器件在填充因子方面表现出显著的改善,这与p-n异质结区域元素混合宽度的减小是一致的。由于体吸收器和异质结的改进,在没有抗反射涂层的情况下实现了13.33%的最高PCE。
:①太阳能制氢生物纳米系统;②胶体组件可编程集成式太阳能燃料生产的可调平台;③界面光谱显微镜研究光阳极水氧化过程;④具有高载流子寿命的磷化物太阳能吸收器设计;⑤太阳能制氢和氮还原的界面现象;⑥用于太阳能转换的
的中间层的反向发射引起的,是系统对等的结果。在一个对等太阳能收集系统中,一个好的太阳能吸收器也是一个好的热发射器。因此,一些吸收的能量会不可避免的重新释放,降低效率。众所周知,打破这种对等关系可以
10月12日,国际领先的太阳能公司REC Group宣布已与迈为股份签署了一份主要生产设备供应协议。休斯顿大学的一位研究人员公布了一种新型的太阳能采集系统,这一系统可以为太阳能的全天候使用开辟道路