外量子效率

外量子效率,索比光伏网为您提供外量子效率相关内容,让您快速了解外量子效率最新资讯信息。关于外量子效率更多相关信息,可关注索比光伏网。

苏州大学廖良生最新Nature:长程有序使量子点发光二极管保持稳定来源:钙钛矿太阳能电池 发布时间:2024-05-10 14:55:15

基于钙钛矿量子点的发光二极管(LED)的外量子效率(EQE)超过25%,并且具有窄带发射,但这些LED的工作寿命有限。钙钛矿量子点薄膜中较差的长程有序性(点大小、表面配体密度和点对点堆叠的变化)会

郑州大学宋继中教授AM:蓝光钙钛矿QLEDs新突破来源:知光谷 发布时间:2024-04-23 10:20:43

金属卤化物钙钛矿量子点发光二极管(QLEDs)在新一代照明和显示领域极具应用前景。目前,绿光和红光钙钛矿QLEDs的外量子效率(EQE)已经超过26%,但是蓝光钙钛矿QLEDs的性能远落后于绿光
载流子注入平衡的策略。鉴于此,郑州大学宋继中等结合CsPbCl3-xBrx QDs的表面钝化和器件结构的合理设计,构筑了发射光谱为490 nm的高效QLEDs,最高外量子效率(EQE)达23.5

美国研发新型量子光伏电池材料平均光伏吸收率达80%来源:pv-magazine 发布时间:2024-04-15 16:58:01

据外媒报道,美国利哈伊大学(Lehigh University)的研究人员在日前发表的一份研究报告宣称,他们开发了一种新的薄膜光伏电池吸收材料,据称这种材料的平均光伏吸收率为80%,其外量子效率
(EQE)为190%。外量子效率(EQE)是光伏电池收集的电子数量与入射的光子数量的比率。它定义了光伏电池将光子转化为电流的能力。研究报告的主要作者之一Chinedu Ekuma在一份声明中说

Nat. Common.全面解读:电荷调制分子键在反式钙钛矿太阳能电池中的缺陷钝化来源:知光谷 发布时间:2024-02-04 13:57:48

程度上取决于它们与HP薄膜的化学相互作用,影响了薄膜的形貌、表面化学和缺陷特性。研究还表明,PZDI的表面处理对HP薄膜的晶体生长和界面质量有更明显的改善,而PEDAI的效果较弱。此外,通过外量子效率

Nat. Energy全面解读:认证18.06%!高效稳定的钙钛矿量子点太阳能电池来源:知光谷 发布时间:2024-01-30 15:36:34

到了显著改善。PQD-MAI器件的外量子效率(EQE)(图1c)在所有波长上均高于PQD-FAI器件,表明提高了电荷收集效率。在偏压为0.974 V时测得的PQD-MAI器件的稳定功率输出(SPO

11.6%!钙钛矿发光二极管外量子效率再刷新来源:中国科学报 发布时间:2024-01-23 11:09:36

近日,南京工业大学柔性电子(未来技术)学院研究团队在环境友好型钙钛矿发光二极管研究中取得重大突破,在国际上首次将锡基近红外钙钛矿发光二极管外量子效率提升至11.6%。相关研究成果发表于《自然
溶液表面结晶,随后在加热退火过程中,二维钙钛矿再以三维钙钛矿为模板缓慢向下生长,最终两者像焊接的一样,牢牢贴合在一起。”论文通讯作者之一、南京工业大学副教授常进说。实验结果显示,基于这一方法构筑的锡基近红外钙钛矿发光二极管外量子效率达到11.6%,刷新了该团队前期保持的8.3%的世界效率纪录。

空气中加工处理的钙钛矿叠层太阳能电池效率达到23%来源:钙钛矿材料和器件 发布时间:2023-12-12 15:38:40

整个可见光范围内呈现出非常高的外量子效率(EQE),这弥补了 BHJ 相对较低的 EQE 的不足。钙钛矿层捕获更高能量的可见光子,而聚合物块异质结池吸收较低能量的红外光。优化后的器件将 1.87

Angew:纪录效率!配体工程实现高效纯红光锡基钙钛矿发光二极管来源:知光谷 发布时间:2023-11-07 15:06:34

了Sn2+的氧化和缺陷的形成。改进的纯红光钙钛矿薄膜不仅表现出优异的均匀性、密度和覆盖率,而且还表现出增强的光学性能和稳定性。最后,纯红光钙钛矿LED在基于PEA2SnI4 的器件领域实现了9.32%的创纪录外量子效率。这项工作表明配体工程是增强锡基钙钛矿LED电致发光性能的可行途径。

刘生忠&赵奎AM : 全文详解!超42%纪录效率!钙钛矿电池来源:知光谷 发布时间:2023-09-08 14:59:18

堆积。溶液老化后具有TFFH的器件再现性的提高归因于溶液中I0和Pb0的同时消除。图 4c显示了器件的外量子效率 (EQE) 曲线,控制器件和目标器件的积分电流分别为25.17和25.55 mA

北京科技大学田建军团队等最新Nano Letters:高效纯红光钙钛矿量子点发光二极管来源:钙钛矿太阳能电池 发布时间:2022-10-24 10:14:24

外量子效率为20.8%,亮度为3775 cd/m2。该设计基于由 3-苯基-1-丙胺和四丁基碘化铵的复合配体覆盖的强量子限域 CsPbI3 量子点 (QD)。该策略稳定了强限域量子点的结构,降低