金属卤化物钙钛矿纳米晶在光学性能上具有极高的可调性,但充分挖掘其潜力面临着庞大而复杂的合成参数空间的挑战。Rainbow为高性能金属卤化物钙钛矿纳米晶的加速、数据驱动的发现与逆向合成提供了一个通用蓝图,助力下一代光子材料和技术的按需实现。
论文概览卤化物钙钛矿太阳能电池因其易受环境降解影响,实现长期稳定性仍具挑战。本研究通过将混合金属硫卤化物引入甲脒基碘化铅晶格,以增强离子结合能并缓解晶格应变,从而解决其不稳定性问题。模拟进一步证实,S与Pb、Sb共同构筑稳定的八面体框架,结构保持FAPbI原型不变。该策略首次实践三价-二价硫卤合金化,为高效、长寿命钙钛矿太阳电池提供了可规模化的组分工程路径,向可再生能源的实用化迈出关键一步。
本研究印度理工学院SormathMahato和SamitK.Ray等人通过双Cs校正高角度环形暗场扫描透射电子显微镜,首次在原子尺度上揭示了混合卤化物钙钛矿纳米晶中Ruddlesden-Popper缺陷的精确结构。RPFs和晶界的应变分析表明,这些缺陷未引入深能级陷阱,反而通过局域载流子增强了辐射复合。文章亮点原子级缺陷调控:首次通过HAADF-STEM实现RPFs和GBs的原子级成像,揭示其无深能级陷阱特性,为缺陷工程提供新视角。
最近研究院光电材料课题组研究发现,与FAPbBr3和FAPbCl3相比,FAPbI3有高介电常数、大的激子波尔半径,其极化可增强可见光吸收,降低载流子有效质量各向异性,显著降低激子结合能,极化诱导的介电屏蔽和晶格畸变协同减弱了电子-空穴库仑相互作用,促进电荷的有效分离。这些发现强调了极化工程是优化卤化物钙钛矿电荷传输和光吸收的关键策略。除此之外,极性相FAPbX3的光谱极限最大效率(SLME)比非极性相提高了36%,这归因于极化介导的载流子输运增强。该研究结果证明极化-结构畸变协同作用是驱动FAPbX3钙钛矿光伏电池效率提高的关键机制。
值得注意的是,器件储存六个月后,仍表现出令人印象深刻的11.9%的室内PCE,证明了不含DMSO的加工路线对锡钙钛矿内在稳定性的有效性。这些发现为开发用于可持续能源应用和物联网设备的高性能、无铅钙钛矿材料提供了宝贵的见解。
Perovski名字命名的一类具有ABX3结构的矿物化合物(如CaTiO3),而具有光伏效应的钙钛矿材料主要是一类具有相同晶体结构的杂化金属卤化物钙钛矿。钙钛矿太阳电池(Perovskite
Solar
Cells-PSC)是指使用“具有钙钛复合氧化物(CaTiO3)具有相同的晶体结构的有机金属卤化物、无机金属卤化物、有机/无机金属卤化物”作为光敏层的一类薄膜太阳电池。(二)技术研发进展1.
文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC)
对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发
,实现 WBG 薄膜出色的卤化物均匀性和精确的结晶控制。NCNT
同时诱导 p 型掺杂并降低钙钛矿/C60 界面能垒,显着增强电荷提取。值得注意的是,通过这种方法制造的 1.68 eV WBG
意大利的研究人员正在解决两个金属卤化物钙钛矿太阳能光伏挑战,减少铅的使用并延长功率转换效率的稳定性,采用微聚光器和皮秒激光加工的新型组合。皮秒激光图案样本 热那亚大学来自热那亚大学和罗马大学 Tor
Vergata
的研究人员正在接受两项著名的金属卤化物钙钛矿(MHP)太阳能光伏挑战,在保持高水平功率转换效率的同时减少铅含量。据报道,通过引入微型聚光器、替代光管理策略和激光图案化技术,研究
/博导李望南介绍称该薄膜状电池,采用钙钛矿型的有机金属卤化物半导体作为吸光材料,它像喷漆一样,可以被喷涂于各类物品表面,在吸收太阳光后,直接将光能转化为电能。李望南希望依托襄阳蓬勃发展的汽车产业,重点布局
Zhang等于eScience发文,提出一种有效的策略,使用无机卤化物盐碘化镍来钝化碘空位并抑制非辐射复合。经碘化镍处理的带隙为1.80eV的CsPbI3-xBrx无机钙钛矿太阳能电池的效率达到19.53