的基本构造PSCs的核心是一种具有ABX₃结构的金属卤化物钙钛矿材料,其中A位通常是有机或无机阳离子(如甲胺MA⁺、甲脒FA⁺或铯Cs⁺),B位是金属阳离子(如铅Pb²⁺或锡Sn²⁺),X位是卤素
阴离子(如碘I⁻、溴Br⁻或氯Cl⁻)器件结构主要分为两种:正式(n-i-p)结构&反式(p-i-n)结构典型器件结构包含三个关键部分:光活性层:钙钛矿材料,通常为ABX₃结构的金属卤化物钙钛矿(如甲胺铅
混合卤化物钙钛矿发光二极管面临着场相关相分离的关键挑战。用配体锚定的离散胶体CsPbX3纳米晶体有望抑制相分离,但当其作为发射膜集成到LED中时,离子迁移如何进行仍是一个谜。具体而言,需要分离单个
Electroluminescence”开发了一种低温辅助转印方法,构建了一个包含清晰CsPbBr3-CsPbI3纳米晶体薄膜界面的模型PeLED,用于追踪钙钛矿纳米晶体薄膜之间沿电场方向的离子迁移。综合研究表明,穿过纳米晶体薄膜
开发基于卤化物钙钛矿的高功率光电器件提供了策略。创新点:1.多功能稳定剂APAB的设计与合成开发了一种含甲脒基(formamidine)的多功能稳定剂APAB,其分解温度超过200°C,通过以下机制提升
钙钛矿发光二极管(PeLEDs)因其高效率和色纯度成为下一代显示技术的潜力候选者。然而,PeLEDs在高电流密度(100 mA
cm⁻²)下的操作不稳定性仍是重大挑战。鉴于此,浙江大学赵保丹&狄
纳米(深红光)波长范围内的红光发光二极管的性能尚未达到上述高度,仍有待进一步提高。阻碍设备性能的一个关键挑战是通过溶液加工合成的钙钛矿薄膜中的缺陷。卤素空位缺陷因其形成能量低而在金属卤化物钙钛矿中十分
发表日期: 23 May 2025第一作者:Xin Ge通讯作者:Shuainan Liu, Xiaodan Zhang研究背景表面端基无序介导的电子特性空间异质性是实现高效金属卤化物钙钛矿光伏器件
——2-氨基烟酰胺和6-氨基烟酰胺,调控烟酰胺分子的空间构象以获得不同吸附取向。借助分子间协同作用,实现柔性多位点吸附,强化了与钙钛矿的相互作用,促进表面电荷的均匀再分布,从而降低空间电子异质性,优化
全无机含锡(Sn)的钙钛矿因其毒性低、最佳窄带隙和卓越的热稳定性而成为单结和串联钙钛矿太阳能电池(PSC)的非常有前途的光伏材料。自 2012
年首次探索以来,已经取得了重大进展,单结和串联器件
的最高效率现在分别超过 17% 和 22%。然而,与Sn2+
的氧化敏感性相关的内在挑战而不受控制的结晶动力学阻碍了它们的进一步发展。解决这些问题需要全面和系统地了解全无机含 Sn
钙钛矿固有
分子。这些发现清楚地证实了分子整合策略的有效性。同时,原位表征表明DMAPA分子可以调节卤化物钙钛矿的结晶动力学,加速中间相向钙钛矿黑相的转变。最终,基于DMAPA的p-i-n结构PSC提供了
精心设计的功能分子对钝化有害缺陷和制备高性能钙钛矿太阳能电池具有重要意义。然而,钝化剂的系统设计和明智选择的简单而严格的方法仍有待建立。鉴于此,云南大学张文华等人在期刊《Energy
表现出更有利的相互作用。实验观察到,DMAPA分子在降低陷阱密度和获得优异的器件性能方面优于ACT和TP分子。这些发现清楚地证实了分子整合策略的有效性。同时,原位表征表明DMAPA分子可以调控卤化物钙钛矿的
功能分子的精心设计对于钝化有害缺陷和制备高性能钙钛矿太阳能电池具有重要意义。然而,目前仍需建立一种简便而严格的方法来系统地设计和合理地选择钝化剂。鉴于此,2025年5月12日云南大学张文华&云南
蒸发-溶液顺序沉积宽带隙钙钛矿已被广泛应用于制备高效、商业化的钙钛矿/绒面硅叠层太阳能电池。然而,目前的研究通常通过在有机盐溶液中加入更多的溴来加宽带隙,这给扩大钙钛矿薄膜的带隙带来了困难,并且容易
金属卤化物钙钛矿单晶是下一代 X 射线探测器的有前景的候选材料。使用钙钛矿 FAPbI₃单晶制造的 X
射线探测器展现出高检测灵敏度。然而,在实际应用中仍有两个紧迫问题需要解决:高质量
高质量钙钛矿FAPbI3单晶棒(SCR)。由于取向FAPbI3单晶棒的高载流子迁移率和大的体电阻率,单晶探测器实现了创纪录的高X射线探测灵敏度(2.16
× 105 µC Gy−1 cm−2)和高