后,在非阴影区,即可安装光伏系统设计要求进行光伏组件布置工作。
图10 障碍物在坡屋顶上的投影分析
5、太阳轨迹的数据
建筑物或障碍物的阴影曲线、区域,是由太阳轨迹和相对空间条件决定的
,通常都是针对组件位于平地、方位角朝向正南方向的情景,根据光伏电站设计规范中的公式即可计算。在光伏系统设计中,女儿墙或建筑物等障碍物的阴影分析,主要是规避阴影遮挡区域后用来做光伏组件布置图。对于障碍物的
的某设计院设计,对于该建筑屋顶的光伏系统设计中,光伏系统设计师对光伏组件的布置采用了和彩钢瓦一样平铺的设计,这样在南坡上的光伏组件组件的朝向南方(组件倾角6,方位角0度),在北坡上的光伏组件朝向正北
经常在网上看到关于光伏组件竖排、横排布置在光伏支架单元上的文章,两者对比的文章,往往会论述几个观点:1、占地面积;2、支架单元用钢量;3、安装便利性;4、发电量的差异。最近的一篇文章《光伏组件横排
优势,某些工程采用了光伏组件的横向四排。但本文以光伏组件竖排、横排的占地面积差异性做一个详细分析,以飨读者。
1、通用的组件竖排、横排布置方式解释
光伏组件采用的规格尺寸60片电池片是1650mm
竖向双排布置。该地建设的光伏电站可采用260Wp的光伏组件竖向双排2X22安装在一个支架单元上设计,22块光伏组件串联为一个组串。1MW光伏电站,配置两台500kW逆变器和1台1000KVA的
,选择种植低矮的农作物,或者提高光伏组件高度,保证种植的农作物的高度低于光伏阵列,避免影响光伏发电。
图2 常规的大型地面光伏电站
光伏电站建设方案:
常规设计的大型地面光伏电站常采用光伏组件
3 某农光互补项目电线杆对组件遮挡的案例
图2,图3 中的电线杆是同一个项目的光伏电站,好像设计人员完全无视它们的存在,在设计中没有做任何阴影避让,同时部分光伏组件在高压线下布置,施工人员照图施工
布置光伏组件,该通信杆的阴影面积约为8932㎡,约为13.4亩地,可以建设0.5MW的地面光伏电站。显然,一根通信杆的客观存在,在光伏设计中避让出如此大的面积是不合适的。类似的场景,还有一些20-30
1.光伏组件采用“横向”排列方式。
2.光伏板钢支架采用前后支腿,立柱不用C型钢。
3.光伏板支架地基应依据地勘报告确定最优方式,桩距宜取1.2m~1.5m
12Mvar考虑。
16.35kV智能测控装置、带电显示装置需安装在开关柜柜门上。
17.35kV配电装置底部采用电缆隧道布置电缆,在35kV配电室内设置人孔进入电缆隧道。
18.需要二次升压的升压
防止光伏板遭到直接雷击。避雷针的布置必须使在形成的保护空间内放置的光伏模块可以避免遭到直接雷击,其次,必须防止任何阴影投射到光伏板上。
注意:在光伏组件和金属部件如:防雷装置、雨水槽、天窗
4
为获得最大经济利润,通常整个屋顶都铺设光伏板。不过,从安装技术角度看,常常无法保持所要求的隔离距离。因此在这些位置必须建立外部防雷系统和金属光伏组件之间的直接等电位连接。在这种情况下,雷电流侵入
1前言
光伏幕墙是太阳光电池与建筑围护结构或建筑材料相结合形成光伏组件,光伏电池组件安装在建筑外墙面作为建筑围护结构的一部分,通过逆变器转换提供建筑物用电或并入电网。
我国太阳能资源极其丰富,年
短,自动调控,无需人员值守,也无需线路架设,减少常年运行费用。
2.8 太阳光电不仅可供自有房屋使用,亦可并网利用。
2.9 在建筑结构外表面铺设光伏组件提供电力,将太阳能发电系统与屋顶、天窗、幕墙等
。 太阳能组件和逆变器及其他电气设备的造价昂贵,在整个投资中,占有绝对大的比例。如果遭受雷击,带给光伏发电系统的不仅仅是经济的损失,更重要的关系到国民生计和国家安全的保证。 如果光伏组件遭到雷击,会造成该
的接地体,就可以有效防止雷击现象的发生,接地体通常会使用长度约2m的镀锌角钢或扁钢。
3.3组合接地
组合接地由多个接地体组成.通常以环形或方形放射状以及其他形式进行安装布局。接地体成环形布置时
倾角(高度角):光伏组件与水平地面之间的夹角;
方位角:光伏组件的朝向与正南方向的夹角。
那在别的地方是什么情况呢?
举个与上图结果差异最大的例子。
1倾角(高度角)变化对发电量的影响
角)对发电量的影响
在不同地区,倾角不同发电量肯定不同。除非受彩钢瓦屋面角度的影响,否则光伏组件一般不会采用朝北安装的方式。因此,仅讨论倾角0~90时,倾角变化对发电量的影响。
倾角变化对发电量的影响