,在并联型充放电控制器充电回路中,开关器件T1是并联在太阳能电池方阵的输出端,当蓄电池电压大于充满切离电压时,开关器件T1导通,同时二极管D1截止,则太阳能电池方阵的输出电流直接通过T1短路泄放,不再
对蓄电池进行充电,从而保证蓄电池不会出现过充电,起到过充电保护作用。
D1为防反充电二极管,只有当太阳能电池方阵输出电压大于蓄电池电压时,D1才能导通,反之D1截止,从而保证夜晚或阴雨天气时不会
,组件内部电流为常规组件的一半,能有效减少组件内部功率损耗,从而提升组件输出功率。同时,该独特的电路设计能大大降低热斑效应的危害;在出现遮挡时,流过的电流减半,且旁路二极管能有效工作,避免组件因
、L2 和滤波电容Cf 组成的三阶滤波器。图1 中,u、i 分别为电压、电流;id 为二极管D 的电流;VT 为晶闸管;r1、r2 为滤波电感L1、L2 的内阻;ug 为电网电压;下标dc 表示直流
,p-n 结具有单向导通性,类似于一个二极管,光照在太阳电池表面p-n 结产生电流,此时接上负载RL 就形成一个回路。 由于电池和背板都具有电阻,这些电阻的存在消耗了电压,相当于给电路中串联了一个
光伏建筑一体化有哪些优势呢? 优势一:满足建筑美学 将接线盒、旁路二极管、连接线等隐藏在幕墙结构中。这样既可防阳光直射和雨水侵蚀,又不会影响建筑物的外观效果,达到与建筑物的完美结合。 优势二
、组件接线盒旁路二极管发热是否严重等。 3 低效处理措施 ■组串MPPT接线优化:目前组串优化器,一般是两路组串一个MPPT,查看逆变器输入端的光伏电缆是否留有余量,如果有余量,因此可将低效的组串
级是由一个升降压斩波电路和反激电路组成。其中,变压器漏感Lk 和开关管MOS1,二极管D1、D2,以及电容C2 构成一个升降压斩波电路;变压器T1、开关管MOS2、二极管D3、电容C3 共同组成一个
经过二极管D3 继续向电容C3 充电并快速下降直至零,二极管D3 关断。该模式电路图如图3a 所示。
2) 模式2(t1~t2):原边电流i1 上升变得缓慢,近似水平线,D3 继续关断,副边电流
分体式接线盒采用最新研发技术,它的外壳(接线盒、连接器)的抗老化能力和防水能力也更为优越,可在恶劣环境条件下正常使用。 3、改进之后的18T26系列汇流条中心距仅6mm,其二极管采用
1. 前言
接线盒中二极管不论在旁路工作还是反向截至状态,都会产生热。特别是随着高效组件输出电流越来越大,接线盒中二极管工作时的发热量通常也会越来越大。据相关研究显示,有些接线盒内二极管旁路导通
工作时,二极管的表面温度达到了170度或更高【1】。
当二极管产生热量大于接线盒冷却能力后,温升和漏电流会造成二极管击穿。这现象定义为热失控(thermal runaway)。为此,IEC62979
上的太阳辐射量;1 为污蚀系数,取0.97;2 为非MPPT 点系数,取0.96;3 为防反二极管系数,取0.98。根据以上公式所得结果见表1。 5 结论 根据上文计算结果可以看出,采用