1. 前言
接线盒中二极管不论在旁路工作还是反向截至状态,都会产生热。特别是随着高效组件输出电流越来越大,接线盒中二极管工作时的发热量通常也会越来越大。据相关研究显示,有些接线盒内二极管旁路导通工作时,二极管的表面温度达到了170度或更高【1】。
当二极管产生热量大于接线盒冷却能力后,温升和漏电流会造成二极管击穿。这现象定义为热失控(thermal runaway)。为此,IEC62979对接线盒中二极管抗热击穿能力制定了判定标准。明确提出了接线盒的冷却能力(cooling capacity of the junction box)这样一个新的衡量接线盒质量的指标,对接线盒的散热设计要进行验证,以确保接线盒中二极管不会发生热击穿。
要满足IEC62979,将根据散热能力,限制接线盒的通过电流能力。理论上,二极管在高温环境工作时,也会像逆变器高温后自动降载一样,通过电流的能力将下降,右图为常规肖特基二级管降流曲线。
因此,接线盒的额定电流不论从接线盒的散热能力,还是二极管本身高温降载特性,都不能简单将二极管在25度环境下测定的正向通过电流(If)直接标定成接线盒的额定电流。而应该根据接线盒的散热能力,及在高温下二极管可以通过的电流能力,来定义接线盒的额定电流。
我们搜集了一些市场上常见的,体积大小相似的接线盒,通过实验分析它们的散热能力和接线盒承载电流的能力。
2. 测试接线盒样品的选择
为了尽量消除接线盒中其他因素对测量结果的干扰,我们统一选体积相似的接线盒,130mil芯片二极管,同一封装厂制造的二极管,做成5个灌胶接线盒(A/B/C/D/E)对比样品。
为了观察轴向二极管和平面二极管的散热情况,我们选择了2款轴向二极管的接线盒(A/B),2款贴片二极管的接线盒(C/D)。 4款接线盒(样品A/B/C/D/)的散热方式均是二极管产生的热量先通过导热硅胶和PPO外壳,再和接线盒壳体外空气进行热交换。
表1: 130二极管基本参数
样品E则是在TUV南德完成认证的新型散热结构的接线盒。其二极管产生的热量通过连接在二极管上的金属,延伸到接线盒外,直接和盒外空气进行交换散热,避免通过导热硅胶和塑料壳体和空气进行热交换。