工程建设标准化协会标准规定小于10%。 为了减少组合损失,应该在电站安装前严格挑选电流一致的组件串联。组件的衰减特性尽可能一致。根据国家标准GB/T--9535规定,太阳电池组件的最大输出功率在
。 ▲双面组件参数表,电流明显高于普通组件 由于电压并没有明显提高,所以在组串设计时组件的串联数仍可与普通组件一致,假如组件串联数为22;而双面组件的实际输出功率是高于普通组件的,假如输出功率为
因为特殊原因使用了特殊的线缆。 5并网箱 在太阳能光伏发电系统中,为了减少太阳能光伏电池阵列与逆变器之间的连线,用户可以将一定数量、规格相同的光伏电池串联起来,组成一个个光伏串列,然后再
,在坩埚所允许的寿命周期内可完成8-10根的晶棒拉制。而RCz先进水平则仅为4-5根/炉,生产效率有比较大的差异。 除了生产方式上的不同,CCz还将RCz技术中一些需要串联顺序进行的工序,优化为并联
,发电量还是偏低。那有人看到这里就会问:为什么横排安装组件的发电量会高呢? 常规组件的电池片会按左图红线所示进行串联接为独立的三串,并在每串中加上一个旁路二极管,通常有三处二极管来保证组件的输出功率
进行了总结概括。
1、系统过压
故障表现:直流电压过高报警。
可能原因:组件串联数量过多,造成电压超过逆变器的电压。
解决办法:按照设计要求进行施工。
2、接地故障
故障表现:光伏系统对地
安装角度和朝向;
(3)检查组件是否有阴影和灰尘;
(4)检测组件串联后电压是否在电压范围内,电压过低系统效率会降低;
(5)多路组串安装前,先检查各路组串的开路电压,相差不超过5V,如果发现
12主栅技术在电池图形设计、组件封装以及生产制程等多方面进行创新,电流在细栅上传导距离缩短,降低了串联电阻、隐裂热阻以及效率衰减,增加了组件功率和寿命,但综合生产成本基本没有增加。 据王栋介绍,在
x 78 mm),对切后联接起来的技术。整个组件的电池片随之被分为两组,每组包含串联连接的 60个半片电池片。组成一个完整的 120 片组件(图 1),从而可将通过每根主栅的电流降低约为原来的 1
/2,内部损耗降低约为整片电池 1/4,进而提升组件功率。
该技术具有以下特点:
第一,相同效率的半片光伏组件比常规整片组件输出功率有明显的提升。这主要得益于半片组件串联电阻的降低,填充因子
),对切后联接起来的技术。整个组件的电池片随之被分为两组,每组包含串联连接的 60个半片电池片。组成一个完整的 120 片组件(图 1),从而可将通过每根主栅的电流降低约为原来的 1/2,内部损耗降低
约为整片电池 1/4,进而提升组件功率。
该技术具有以下特点:
第一,相同效率的半片光伏组件比常规整片组件输出功率有明显的提升。这主要得益于半片组件串联电阻的降低,填充因子 FF 的提高
主要从金属细栅网格、半导体-金属接触电阻和二极管电阻几方面影响电学性能,组件端主要受焊带有效串联电阻影响。
所以,为了提升电池组件效率,应优化电池金属化电极以尽量减少遮挡和阻抗损失,而多主栅技术便是
减少焊带总量的使用,从而进一步减少银浆、焊带耗量和电池片遮挡。
图2.电池片上串联电阻分布情况
(3)银浆消耗量的降低能显著降低成本。由于细栅和主栅优化,整体银浆耗量下降,12BB相比