南京大学谭海仁&林仁兴等重磅Nature:偶极钝化!全钙钛矿叠层30.1%世界纪录终上线!24.9%铅锡钙钛矿单结电池!

来源:钙钛矿太阳能电池之基石搭建发布时间:2025-10-28 09:09:56

图片

通讯作者:南京大学谭海仁&林仁兴&国防科技创新研究院常超&北京理工大学徐健

窄带隙(NBG)子电池中空穴传输层(HTL)/钙钛矿界面的非辐射复合损失限制了全钙钛矿叠层太阳能电池的功率转换效率(PCE)。对于铅锡(Pb-Sn)基窄带隙钙钛矿太阳能电池,最小化其埋底界面处的电荷复合尤其具有挑战性,因为传统的长链胺基钝化策略通常会引入载流子传输损失,从而限制填充因子(FF)和短路电流密度(Jsc)。

在此,作者开发了一种偶极钝化策略,该策略在降低混合铅锡钙钛矿埋底界面陷阱密度的同时,还能实现HTL/钙钛矿界面的精确能级对齐。这种偶极诱导的钝化增强了欧姆接触,促进了空穴向HTL的高效注入,并排斥电子远离HTL/铅锡钙钛矿界面。

该方法将载流子扩散长度延长至6.2 μm,并显著提高了铅锡钙钛矿太阳能电池的PCE,达到24.9%,同时获得了0.911 V的开路电压(Voc)、33.1 mA cm-2的Jsc以及高达82.6%的FF。此外,该偶极钝化有效减轻了由叠层器件连接层引起的窄带隙子电池中的接触损失,使得全钙钛矿叠层太阳能电池实现了30.6%的卓越PCE(认证稳定效率为30.1%)。

图片

图片

图片

图片

器件制备

钙钛矿前驱体溶液

  • 窄带隙 FA₀.₇MA₀.₃Pb₀.₅Sn₀.₅I₃ 钙钛矿: 前驱体溶液(2.4 M)在体积比为 2:1 的 DMF 和 DMSO 混合溶剂中制备。FAI/MAI 和 PbI₂/SnI₂ 的摩尔比分别为 0.7:0.3 和 0.5:0.5。(FAI+MAI)/(PbI₂+SnI₂) 的摩尔比为 1:1。在前驱体溶液中加入了 SnF₂(相对于 SnI₂ 为 10 mol%)。前驱体溶液在室温下搅拌 2 小时。在前驱体中加入锡粉(5 mg mL⁻¹)以还原前驱体溶液中的 Sn⁴⁺ 并提高薄膜均匀性。对于含有钝化配体 CF₃-PACl(0.3 mol%)的对照溶液,将其以优化浓度添加到前驱体溶液中。在制备钙钛矿薄膜之前,前驱体溶液通过 0.22 μm PTFE 膜过滤。
  • 宽带隙 FA₀.₈Cs₀.₂Pb(I₀.₆₂Br₀.₃₈)₃ 钙钛矿: 前驱体溶液(1.2 M)由六种前驱体溶解在体积比为 4:1 的 DMF 和 DMSO 混合溶剂中制备。FAI/FABr/CsI/CsBr 和 PbI₂/PbBr₂ 的摩尔比分别为 0.48:0.32:0.12:0.08 和 0.62:0.38。(FAI+FABr+CsI+CsBr)/(PbI₂+PbBr₂) 的摩尔比为 1:1。前驱体溶液在 50 °C 下搅拌 2 小时,使用前通过 0.22 μm PTFE 膜过滤。

钝化溶液

  • 偶极钝化溶液(SA溶液): SA 溶液在体积比为 1:1 的 DMF 和 DMSO 混合溶剂中制备。前驱体溶液在 80 °C 温度下搅拌 5 小时。然后,在制备钙钛矿薄膜之前,前驱体溶液通过 0.22 μm PTFE 膜过滤。
  • EDAI 顶部钝化溶液: EDAI 溶液(0.5 mg mL⁻¹)在 IPA 中制备。前驱体溶液在室温下搅拌 2 小时。然后,在制备钙钛矿薄膜之前,前驱体溶液通过 0.22 μm PTFE 膜过滤。

器件制备

  • 偶极钝化混合 Pb-Sn 钙钛矿太阳能电池: 依次使用丙酮和异丙醇清洁预图案化的氧化铟锡玻璃基底。尽管 ITO NCs/SAM (IC-CH) HTL 比传统的 PEDOT:PSS HTL 表现出更低的寄生吸收——使得 Pb-Sn 钙钛矿器件能够获得更高的 Jsc——但基于混合 FA/MA 的 Pb-Sn PSC 在使用 ITO NCs/SAM HTL 时仍然遭受显著的 Voc 和 FF 损失。这是一个持续存在的挑战,目前仍缺乏有效的解决方案。因此,保留 PEDOT:PSS 作为 HTL 以减轻这些 Voc 和 FF 损失。PEDOT:PSS 以 4000 rpm 的转速旋涂在 ITO 基底上 30 秒,并在环境空气中于 150 °C 的热板上退火 20 分钟。冷却后,立即将基底转移到充满氮气的手套箱中用于沉积钙钛矿薄膜。SA 以 4000 rpm 的转速旋涂在 PEDOT:PSS 上 30 秒,并在 100 °C 的热板上退火 2 分钟(无 SA 层的对照器件)。冷却后,通过两步旋涂程序沉积钙钛矿薄膜(2.4 M):(1) 1000 rpm 持续 10 秒,加速度为 200 rpm/s;(2) 4000 rpm 持续 40 秒,加速至 1000 rpm/s。在程序结束前 20 秒的第二阶段旋涂过程中,将乙酸乙酯(300 µL)滴加到旋转的基底上。然后将基底转移到热板上,在 100 °C 下加热 10 分钟。冷却至室温后,将 EDAI2 以 4000 rpm 的转速旋涂在钙钛矿薄膜上 30 秒,并在 100 °C 的热板上退火 2 分钟。将基底转移到蒸发系统。最后,通过热蒸发依次在钙钛矿顶部沉积 C60(20 nm)/BCP(7 nm)或 ALD-SnO₂(10 nm)/Cu(150 nm)。
  • 全钙钛矿叠层太阳能电池: 制备了器件结构为 Glass/ITO/NiO/SAM/WBG perovskite/C60/ALD-SnO₂/Au/PEDOT:PSS/NBG perovskite/C60/BCP or ALD/Cu 的全钙钛矿叠层太阳能电池。首先将 NiO 纳米晶(水中 15 mg mL⁻¹)以 3000 rpm 的转速旋涂在 ITO 基底上 30 秒,并在空气中于 130 °C 的热板上退火 30 分钟。NiO 纳米晶根据先前的报告合成。冷却后,立即将基底转移到手套箱中。将未掺杂的 SAM(2PACz 和 MeO-2PACz,浓度相同(IPA 中 1 mM),按体积比 75:25 混合)以 4000 rpm 的转速旋涂在 NiO 薄膜上 20 秒,然后在 100 °C 下退火 3 分钟。通过两步旋涂程序将宽带隙钙钛矿薄膜沉积在 SAM 修饰的 NiO 上。第一步为 2000 rpm 持续 10 秒,加速度为 200 rpm/s。第二步为 6000 rpm 持续 40 秒,加速至 2000 rpm/s。在程序结束前 20 秒的第二阶段旋涂过程中,将苯甲醚(120 µL)滴加到旋转的基底上。然后将基底转移到热板上,在 100 °C 下加热 5 分钟,然后在 85 °C 下加热 15 分钟。对于 WBG 钙钛矿的后处理,制备了 EDAI2(1 mg ml⁻¹,溶于 IPA: 甲苯体积比 1:1 的混合溶剂)和 4F-PEACl(1 mg ml⁻¹,溶于 IPA),并依次沉积。旋涂速度设置为 5,000 rpm,持续 20 秒。当旋涂速度达到最大值时,将 50 μl 处理液滴加到钙钛矿薄膜上。在每次旋涂后处理溶液后,将钙钛矿薄膜在 100 °C 下退火 5 分钟。冷却至室温后,将基底转移到蒸发系统,随后通过热蒸发以 0.2 Å/s 的速率在顶部沉积 20 nm 厚的 C60 薄膜。然后将基底转移到原子层沉积系统,在低温(通常为 100 °C)下使用四(二甲氨基)锡(IV)前驱体在 ALD-SnO₂ 上沉积 20 nm SnO₂。将基底转移回热蒸发系统,在 ALD-SnO₂ 上沉积超薄 Au 团簇层(约 0.4 nm)。将 PEDOT:PSS 层旋涂在前子电池的顶部,并在空气中 120 °C 下退火 20 分钟。基底冷却后,立即将基底转移到充满氮气的手套箱中,使用与单结器件相同的程序沉积对照和偶极钝化的窄带隙钙钛矿薄膜。最后,通过热蒸发依次沉积 20 nm C60、7 nm BCP 和 150 nm Cu 薄膜。关于 ALD-SnO₂ 层沉积的详细信息可在之前的工作中找到。

为最小化由于带隙变宽导致的 Jsc 降低损失,制备 WBG 子电池时未采用之前工作中在反溶剂中使用 2D 钝化剂的策略,从而在叠层器件中实现了子电池之间更好的电流匹配。

索比光伏网 https://news.solarbe.com/202510/28/50011184.html

责任编辑:周末
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
这家企业申请异质结/钙钛矿叠层发明专利来源:摩尔光伏 发布时间:2025-12-08 16:22:16

近日,国家知识产权局信息显示,中建材浚鑫科技有限公司申请一项名为“一种超高效异质结与钙钛矿叠层光伏组件”发明专利,申请公布号:CN121038506A,申请日期为2025年8月,申请公布日2025年11月28日。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

向27%量产电池效率迈进——迈为股份亮相国际异质结大会暨钙钛矿-硅叠层大会,分享最新异质结提效技术来源:迈为股份 发布时间:2025-12-05 16:11:25

2025年12月1-3日,第八届国际异质结大会和首届国际钙钛矿-硅叠层大会在韩国大田隆重举行。面向27%效率的下一代异质结技术布局在上述已验证且行之有效的提效技术基础上,彭振维进一步介绍了迈为对下一代异质结电池的探索与发现。异质结成本与可持续性优势凸显除了效率领先,异质结技术的低成本潜力正加速释放。随着银浆价格持续上涨,异质结电池低银耗的优势日益突出,成本竞争力进一步增强。

25.05%!万亿央企再刷钙钛矿电池效率世界纪录来源:钙钛矿OPV薄膜太阳能 发布时间:2025-12-05 14:50:55

作为全球光伏领域的新一代核心技术,钙钛矿电池凭借其卓越的效率潜力备受瞩目。其中,单结钙钛矿电池的理论转换效率上限可达33%,叠层结构钙钛矿电池更是高达43%,这两项指标均大幅超越传统晶硅太阳能电池29.4%的效率极限。通过持续的技术创新,团队成功攻克了薄膜材料广域带隙精准调控、高质量结晶工艺优化等一系列关键难题,先后3次刷新1.68eV宽带隙与1.50eV常规带隙钙钛矿电池的光电转换效率世界纪录。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

中国石油再创钙钛矿电池效率世界纪录来源:钙钛矿材料和器件 发布时间:2025-12-05 14:27:36

通过持续的技术创新,团队成功攻克了薄膜材料广域带隙精准调控、高质量结晶工艺优化等一系列关键难题,先后3次刷新1.68eV宽带隙与1.50eV常规带隙钙钛矿电池的光电转换效率世界纪录。这一成果不仅标志着中国石油在钙钛矿电池技术领域实现了多路线布局,更使其跻身全球极少数掌握多种钙钛矿太阳能电池核心技术的企业行列。

中信证券:太空算力走向现实 钙钛矿料将迎来新机会来源:钙钛矿材料和器件 发布时间:2025-12-05 14:24:39

中信证券研报表示,太空算力正从概念逐渐走向现实,海外科技巨头已纷纷布局。2025年以来,钙钛矿产业化进展加速,效率、稳定性纷纷取得突破,行业内多条GW级产线相继投产,建议关注钙钛矿产业投资机会。基于以上分析,中信证券建议投资者密切关注钙钛矿产业的投资机会。太空算力的崛起为钙钛矿料带来了前所未有的发展机遇,钙钛矿产业的加速发展也将为投资者带来丰厚的回报。