
论文总览
钙钛矿太阳能电池(PSCs)因其高效率和低成本的潜力而受到广泛关注。近年来,空气制备的钙钛矿太阳能电池逐渐成为研究热点,因其能够降低生产成本并促进大规模商业化。然而,空气中制备的PSCs效率仍低于在氮气箱中制备的PSCs。为了提升空气制备PSCs的性能,华北电力大学李美成教授团队提出了一种新的电子传输层(ETL)优化策略,该研究通过引入谷氨酸二乙酸四钠(GLDA)调控SnO₂电子传输层的化学浴沉积过程,并结合β-胍基丙酸(βA)构建界面分子桥,显著提升了电子提取效率并降低了非辐射复合。最终,电池在0.08 cm²和1 cm²面积下分别实现了25.74%和24.61%的认证效率,同时展现出优异的操作稳定性。文章以“Compatible Soft-Templated Deposition and Surface Molecular Bridge Construction of SnO2 Enable Air-Fabricated Perovskite Solar Cells with Efficiency Exceeding 25.7%”为题发表在Advanced Energy Materials期刊上。
核心技术亮点
➤ 软模板沉积法优化SnO2:利用谷氨酸二乙酸盐(GLDA)调控化学浴沉积过程,成功制备出无残留添加剂的高质量SnO2薄膜,减少了表面缺陷,提升了电荷传输性能。
➤ 分子桥构建增强电子提取:通过在SnO2/钙钛矿界面引入β-胍基丙酸(βA),有效减少了界面缺陷,优化了钙钛矿的晶体生长,提升了电池的开路电压(VOC)和填充因子(FF)。
➤ 全面提升稳定性:该技术不仅提升了PCE,还显著增强了太阳能电池的稳定性,特别是在无封装的情况下,电池在2000小时后仍保持了95%的初始效率。
➤ 大面积应用潜力:通过制备1 cm²的大面积PSCs,证明了该技术在大规模应用中的可行性,开创了空气制备高效钙钛矿电池的新途径。
图文分析

GLDA调控SnO2沉积过程与薄膜表征:
本图系统展示了GLDA对SnO2沉积过程的调控效果。通过动态光散射(DLS)分析发现,添加GLDA后前驱液中颗粒尺寸从1149nm降至226nm,有效抑制了颗粒聚集(图1a)。原子力显微镜(AFM)显示GLDA-SnO2薄膜表面粗糙度(RMS)从31.71nm降至17.40nm,呈现更致密平整的形貌(图1b, c)。截面SEM证实GLDA-SnO2薄膜厚度更均匀且表面更光滑(图1d)。电学测试表明GLDA处理使SnO2电导率显著提升(图1e)。FTIR证实GLDA在沉积过程中起"软模板"作用,最终可通过超声清洗完全去除,不留残留(图1f, g)。这种无残留特性为后续界面修饰提供了理想平台。

βA分子界面修饰与能级调控:
本图详细解析了βA分子对SnO2表面的修饰机制和能级调控作用。XPS分析显示βA修饰后Sn 3d结合能下移0.15-0.25eV,表明羧基吸附增加了Sn周围的电子云密度(图2c)。O 1s谱中晶格氧比例从52.91%提升至60.61%,证实βA有效抑制了羟基吸附(图2d)。开尔文探针力显微镜(KPFM)显示βA修饰使表面电位降低,费米能级上移(图2e-g)。UPS测试结合Tauc曲线计算表明,βA使SnO2导带底从-4.40eV上移至-4.13eV,与钙钛矿形成更匹配的能级排列(图2h, i)。这种能级优化显著促进了界面电子提取,同时βA分子中的胍基为后续钙钛矿结晶提供了理想的成核位点。

钙钛矿薄膜结晶质量与应变分析:
本图展示了βA修饰对钙钛矿薄膜结晶质量和应变状态的显著改善。SEM显示在SnO2/βA上生长的钙钛矿薄膜晶粒更大且PbI2残留更少(图3a, b)。XRD分析表明α-(100)峰强度增强,PbI2/α-(100)峰强比从0.85降至0.13,证实βA促进高质量黑相钙钛矿形成(图3c)。深度分辨GIXRD测试发现,常规样品存在明显的残余拉伸应变,晶面间距随探测深度变化显著(斜率较大),而SnO2/βA上生长的薄膜晶格应变几乎完全释放,晶面间距保持稳定(图3d-f)。这种应变释放源于βA分子桥的缓冲作用,可有效抑制晶格畸变和缺陷产生,为获得高性能器件奠定基础。

缺陷钝化与载流子动力学分析:
本图系统评估了βA分子桥对缺陷钝化和载流子动力学的改善效果。PL测试显示SnO2/βA上钙钛矿薄膜发光强度显著增强,表明非辐射复合减少(图4b)。空间电荷限制电流(SCLC)测试计算得缺陷密度从2.20×10¹⁵cm⁻³降至1.81×10¹⁵cm⁻³(图4c)。PL mapping显示目标薄膜发光强度整体降低且分布更均匀,表明电子提取更高效(图4d, e)。TRPL分析发现目标薄膜平均载流子寿命(τ_ave)从239.2ns缩短至201.9ns,证实界面电子提取加速(图4f)。暗态J-V曲线显示目标器件饱和电流降低,理想因子从2.45改善至1.70,表明非辐射复合显著抑制(图4g, h)。EIS测试显示接触电阻降低而复合电阻增加,验证了分子桥对界面传输的促进作用(图4i)。

器件性能与稳定性评估:
本图展示了空气制备器件的创纪录性能和优异稳定性。冠军器件(0.08cm²)获得25.74%的效率(Voc=1.19V,FF=84.04%),认证效率达25.43%,是目前空气制备PSCs的最高值(图5a,b)。稳态功率输出在最大功率点保持25.6%的效率(图5c)。40个器件的统计显示平均效率达24.96%,显著高于对照组的24.20%(图5d,e)。1cm²大面积器件也实现24.61%的效率,展现良好放大潜力(图5f)。未封装器件在环境空气(20%RH)中存储2000小时后,目标器件保持95%初始效率,而对照组仅剩81%(图5g)。在氮气环境中持续光照1000小时后,目标器件仍保持91%的初始效率(图5h)。这种卓越稳定性源于优化的薄膜质量和βA分子桥对界面缺陷的有效钝化。
文献来源
Y.Yang, et al., "Compatible Soft‐Templated Deposition and Surface Molecular Bridge Construction of SnO2 Enable Air‐Fabricated Perovskite Solar Cells with Efficiency Exceeding 25.7%." Advanced Energy Materials. 14. 23 (2024): 2400416. DOI: 10.1007/s40820-025-01838-6
仅用于学术分享,如有侵权,请联系删除。
索比光伏网 https://news.solarbe.com/202508/1/50005261.html

