研究人员通过改进电化学还原技术实现可持续能源生产

来源:储能世界发布时间:2021-04-14 09:00:56

在对未来可持续燃料和化学品生产的设想中,污水、厨余和木屑等少量生物质的储存往往被忽视。其原因是将这些材料运送到大规模的集中式生物精炼厂所需要的能源比它们生产的能源还要多。然而,这些材料中有足够的碳滞留,理论上可以提供美国运输燃料需求的25%。

 

1.webp (2)
由太平洋西北国家实验室(PNNL)的研究人员领导的一项新的评论提供了一个捕获这些未使用材料的解决方案:位于废物源附近的迷你炼油厂,以及利用可再生能源驱动的电化学还原反应处理这些看似难以被利用的物质。在最近发表在《化学评论》上的论文中,研究人员从100多年的化学理论中收集了迷你炼油厂加工工业物质的高效部分所需的理论、材料和反应器设计的信息。在过去的四年里,该计划一直在研究功能性迷你炼油厂所需的基础电化学、催化剂设计和反应器设计。将污水、厨余和植物废弃物转化为燃料的挑战在于必要的分子转化。这种转化的第一步是在高温下分解生物质,以产生粗制的生物油。这种油含有醛、酮、酯、酸和酚等分子,其中含有许多氧原子。然而,燃料是由各种碳氢化合物分子组成的,这些碳氢化合物分子含有的氢比氧多。向富含氧的分子中添加氢气需要进行化学转化,称为还原反应。为了在生物油上进行这些反应,现有的工业工艺在高温高压下用氢气轰击生物原油。在大范围内,这些反应过程中产生的热量被收集并重新用于其他精炼步骤。这最大限度地提高了该工艺的总体能源效率。然而,在小规模的情况下,这些热量就会流失,无法再利用。这意味着需要采用其他的还原反应方法来对小规模的废物进行局部处理。众所周知的电化学还原反应是实现节能小型精炼厂所需的温和条件的一条途径。在这些反应中,电力和金属催化剂,而不是氢气和热量推动了分子转化。混合物中的其他分子也可以同时被清除,在反应过程中提供氢原子。
2.webp (2)
与使用氢气的热化学还原相比,生物油中特定分子的电化学还原可以在不提高反应温度的情况下更快地进行,并产生较少的副产品。这意味着在以后的生产过程中需要更少的净化步骤,从而提高了整个过程的能源效率。

 

电化学转化所需的基本电化学已为人所知数百年。然而,大多数工作都涉及到实验室对代表来自生物质的分子的模型化合物的研究。在这篇综述中,研究人员概述了现有的信息--仍然需要将这些反应搬出实验室。这些信息包括研究开发能够处理生物油中发现的复杂分子混合物的新催化剂,以及电化学分析以开发节能工艺。PNNL的 "化学转化计划 "为推进这项工作提供了一个独一无二的机会,因为它将具有催化专业知识的研究人员与擅长电化学的研究人员结合在一起。这些不同的视角共同带来了有关指导电催化反应每一步的基本原理的知识。然后,研究人员可以在这个广泛的基础上推动现有科学向应用发展,并将特定反应与特定的生产步骤相匹配。


索比光伏网 https://news.solarbe.com/202104/14/337171.html
责任编辑:gaoyuxing
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
合肥新站钙钛矿产业大会召开,全力打造“长三角钙钛矿光伏技术特色产业园”来源:钙钛矿工厂 发布时间:2025-12-29 09:47:39

12月26日下午,合肥新站高新区钙钛矿光伏产业创新发展会正式召开,高校专家、产业链企业金融机构、科创孵化平台代表齐聚新站共话钙钛矿光伏产业发展新机遇。

2025光伏创新图鉴 谁将主导新技术来源:索比光伏网 发布时间:2025-12-26 15:52:19

2025年,在技术创新的浪潮中,光伏电池组件企业聚焦TOPCon、BC、HJT等核心技术路线,持续刷新效率纪录、推进产业化落地,同时在组件技术与系统集成领域斩获颇丰,形成了多元化的创新格局。

中科院化学所孟磊团队:氧化还原改进型混合 SAM 助力倒置钙钛矿电池来源:先进光伏 发布时间:2025-12-15 22:13:19

钙钛矿太阳能电池凭借高功率转换效率(PCE)和低成本制备优势,成为光伏领域的研究热点。其中,采用镍氧化物(NiOₓ)/ 自组装单分子层(SAM)作为空穴传输层(HTL)的倒置钙钛矿太阳能电池(p-i-n 型),因结构简单、兼容性强,更具产业化潜力。然而,NiOₓ表面存在 Ni²⁺和 Ni³⁺混合价态的固有问题,不仅导致 SAM 层难以均匀生长,影响电荷传输效率,高活性的 Ni³⁺还会加速钙钛矿材料分解,严重制约器件的稳定性。为解决这一核心瓶颈,中国科学院化学研究所李永舫&孟磊团队团队设计了一种创新策略:利用新型SAM分子MeOF-4SHCz靶向NiOx表面的富Ni³⁺区域,通过局域氧化还原反应原位形成S–O–Ni键;同时,常规SAM分子MeOF-4PACz继续在Ni²⁺区域通过P–O–Ni键实现稳定锚定。当这两种分子以4:1(w/w)的优化比例复合后,在NiOx表面形成了协同作用的混合SAM层,其覆盖度与均匀性得到显著提升。基于此氧化还原改进型(ROI)-SAM空穴传输层所构筑的倒置钙钛矿太阳能电池,获得了26.5%的优异PCE(认证效率26.28%),并在持续最大功率点(MPP)运行下展现出超过1000小时(T90)的长期稳定性。

中科院孟磊Nat Commun:用于倒置钙钛矿太阳能电池的氧化还原改进型自组装单分子层来源:知光谷 发布时间:2025-12-15 18:17:21

倒置型钙钛矿太阳能电池(p-i-n pero-SCs)采用氧化镍(NiOx)与自组装单分子层(SAM)作为空穴传输层(HTL),已展现出较高的光电转换效率(PCE)。然而,NiOx表面镍价态的多样性给高质量SAM HTL的构建带来了复杂性。

突破瓶颈!我国在太阳能电池领域再获新突破来源:能慧 发布时间:2025-12-10 14:34:26

近日,南京大学谭海仁教授团队联合仁烁光能(苏州)有限公司,攻克了钙钛矿薄膜生产中绿色溶剂制备以及薄膜制备均匀性的难题,实现了钙钛矿光伏组件光电转换效率和组件长期运行可靠性的双重突破。

7 项国际标准全票落地 一道新能提速光伏技术全球话语权来源:一道新能 发布时间:2025-12-08 09:49:38

近日,SEMI中国光伏标准技术委员会2025年秋季会议在江苏无锡成功举办。此次这些标准进入发布前的全球投票环节,不仅是对一道新能标准编制组专业能力的肯定,更标志着中国光伏技术方案获得全球同行的广泛认同。SEMI中国光伏标准技术委员会主席、一道新能首席技术官宋登元博士表示:“本次4项国际标准全票通过和3项新提案成功立项,既是全球行业对中国企业技术实力的认可,更提速了中国光伏技术全球话语权”。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

工业设计驱动创新 一道新能推动光伏技术迭代升级来源:一道新能 发布时间:2025-12-03 14:48:46

近日,浙江省经济和信息化厅正式公布了2025年度(第九批)省级工业设计中心认定名单,一道新能凭借在光伏领域长期积淀的工业设计创新能力、体系化的设计研发架构,以及兼具技术突破与市场价值的产业化应用成果,成功获批“浙江省省级工业设计中心”。设计赋能激活产业新动能工业设计是制造业价值链的关键环节,是提升光伏产品竞争力、推动产业升级的重要引擎。

通威受邀出席第二十一届中国太阳级硅及光伏发电研讨会(CSPV),展示光伏技术最新成果来源:通威股份 发布时间:2025-12-02 09:40:08

11月29日,第二十一届中国太阳级硅及光伏发电研讨会在安徽淮南隆重举行。通威股份光伏技术中心胡逾超博士、王思平、张超受邀出席并发表演讲。通威股份光伏技术中心张超作主题演讲本次CSPV会议的成果展示与技术交流,体现了通威在技术创新方面的领先实力,这些突破彰显了通威以实证驱动创新、以量产为导向的技术理念,为光伏产业高质量发展提供了重要支撑。

前沿光伏技术之中间带太阳电池:让低能光子“无处可逃”的超能武器来源:网络 发布时间:2025-11-24 11:09:28

以晶体硅为代表的第一代太阳电池,其效率已接近理论极限,提效空间有限;第二代太阳电池(CdTe、CIGS、非晶/微晶硅等)虽然生产成本较低,但效率偏低,且其中部分材料存在资源稀缺或环境毒性等问题,难以支撑大规模可持续应用。在此背景下,第三代太阳电池应运而生,包括有机光伏、钙钛矿电池、多结叠层、中间带、热载流子、光子/激子倍增以及热光伏等。这些新技术的共同目标是在不增加复杂封装与阳光跟踪系统的前提下,不断推动单片电池转换效率的提升。