Joule:辣椒素给太阳能电池“提味”

来源:CellPress细胞科学发布时间:2021-01-18 10:36:19

中国和瑞典的科学家发现,一小撮辣椒素(一种使辣椒具有辛辣味的化合物)可能是更稳定、更高效率钙钛矿太阳能电池的秘密成分。这项研究于2021年1月13日发表在Cell Press细胞出版社旗下期刊Joule(《焦耳》)上,研究确定在制备过程中将辣椒素撒入甲基铵碘化铅(MAPbI3)前驱体中,会导致大量电子(而不是空的占位符)在钙钛矿半导体表面传导电流。该添加剂产生了迄今为止电荷传输最有效的多晶MAPbI3太阳能电池。

Cell Press细胞出版社微信公众号对该论文作者之一保秦烨教授进行了采访并对论文进行了解读,旨在与广大科研人员深入分享该研究成果以及一些未来的展望。

 

 

该研究的通讯作者之一,华东师范大学的保秦烨教授说:“将来,使用绿色和可持续的基于森林系生物添加剂技术是无毒无铅钙钛矿半导体的明显趋势。作为清洁能源,我们希望最终制备出完全绿色的钙钛矿太阳能电池。”

尽管基于金属卤化物钙钛矿的太阳能电池被认为是最具发展潜力的光伏技术,但它们受到非辐射复合的困扰,这是一种不良的电子级过程,会降低效率并加剧热损失。

保秦烨团队与合作者寻求了一种天然的、基于森林材料的廉价添加剂,以克服这一局限,提高太阳能电池的性能。

保秦烨说:“考虑到辣椒素的电学、化学、光学和稳定性能,我们初步认为它可能是一个很有前途的添加剂。”

为了验证辣椒素的作用,研究人员将0.1wt%的化合物(最佳确定浓度)添加到MAPbI3钙钛矿前体中,制备太阳能电池器件。接下来,一系列表征技术,包括紫外光电子能谱、X射线光电子能谱、时间分辨光致发光谱等,确定辣椒素如何影响太阳能电池的性能。研究发现,参比器件(未添加辣椒素)的功率转换效率为19.1%,但是含有辣椒素的器件效率达21.88%,几乎追平单晶MAPbI3光伏器件21.93%效率纪录。此外,含有辣椒素的器件还显示出更高的稳定性,未封装的器件在空气环境中存储800小时后,仍可保持其初始效率的90%以上。

辣椒素可大大降低钙钛矿薄膜的缺陷密度,将电子密度提高一个数量级,促进电荷传输。此外,他们还在含有辣椒化合物的太阳能电池中观察到更小的泄漏电流,表明该化合物成功抑制了非辐射复合。

研究发现,器件性能的提高还来自于辣椒素完全改变了钙钛矿半导体表面区域的电子结构从原先p型转变到n型,自发形成了p-n同质结,在电子缺陷-“空穴”主导的p型半导体层和电子主导的n型半导体层之间形成缓冲界面。从能级上看,该界面可促进电荷传输并有效抑制传统钙钛矿半导体中观察到的能量损失。

研究团队指出,虽然辣椒素可为大面积、高效率的钙钛矿太阳能电池发展提供一种低成本、可广泛获取的添加剂,但需要进一步研究确定该化合物对无毒、无铅钙钛矿的作用,例如无机钙钛矿和双钙钛矿。此外,在将其准备用于商业应用之前,还需进一步提高电池的稳定性。

保秦烨说:“我们将进一步关注天然森林基生物材料添加剂的化学结构,与光敏材料之间的相互作用、以及与光伏性能之间的关系。我们希望产生有价值的新知识,以进一步提高新型钙钛矿型太阳能电池的功率转换效率和稳定性。”

这项工作得到了国家自然科学基金、中央大学基础研究基金、上海市青年科技启明星、华东师范大学公共创新服务平台、国家重点研发计划等项目支持。

作者专访

Cell Press细胞出版社特别邀请论文作者之一保秦烨教授进行了专访,请他为大家进一步详细解读。

CellPress:

您和团队是如何想到通过使用辣椒素来提升钙钛矿太阳能电池性能的?

保秦烨教授:

一方面,我们课题组在利用光电子能谱研究软物质半导体(有机半导体,钙钛矿半导体)器件界面电子结构特性方面积累了一些经验。希望通过添加剂改变钙钛矿半导体表面电子结构,与电荷传输层实现匹配的界面电子结构,从而减少器件能量损失。另一方面,我们一直在寻找使用绿色、可持续的基于森林系生物添加剂技术,并与无毒无铅钙钛矿半导体结合,最终实现完全绿色的钙钛矿电子器件。通过综合考虑辣椒素化合物的电学、化学、光学和稳定性等性质,我们初步认为它可能是一个很有效的添加剂,并取得了不错的效果。

CellPress:

研究过程中是否遇到瓶颈?又是如何突破的呢?

保秦烨教授:

钙钛矿半导体表面区域电子结构经历了从原先的p型到n型的完全转变,这是研究中发现的一个新现象。我们起初利用光电子能谱原位表征系统观测到这一转变,但是紫外光电子能谱UPS是一种表面极其敏感的表征技术,它的探测深度只有1 纳米,所以我们并不知道薄膜内部电子结构是否也发生了相应的变化。如果用离子枪刻蚀,显然会破坏薄膜的电子结构,如何准确确定钙钛矿薄膜内部以及底部的电子结构信息成为难点。针对这个问题,我们与合作者设计了一组霍尔效应测试的新结构,可以探测薄膜底部和顶部的导电类型,进而确定钙钛矿能级。同时,利用截面KPFM探测整层钙钛矿薄膜的电势变化,进一步发现薄膜电子结构转变发生在表面以下大约100 nm处。研究过程中难免会遇到瓶颈,而科学研究往往又在于突破这些瓶颈。

CellPress:

在大规模投入商业应用之前,您认为还有哪些需要解决的主要问题。

保秦烨教授:

目前钙钛矿太阳能电池的效率已经突破了25%,在大规模投入商业应用之前,还有使用寿命、钙钛矿材料本身绿色环保?大面积制备等方面的问题需要解决。这些问题需要学术界与工业界的共同努力。

CellPress:

请保秦烨为青年学者应如何选题立意,以及开展后续的研究工作(特别是在国际间合作研究方面),给出您宝贵的指导意见。

保秦烨教授:

我也是青年学者。对于如何选题立意,首先从科学问题入手,选择研究方向。建立课题组时间不长,独立研究的青年学者,课题组本身不会很大,所有要集中某一方向,深入研究,做出自己的特色,我们课题组聚焦基于光电子能谱的物质半导体界面电子结构与光电调控研究。合作对于深入研究,提高工作质量至关重要,我们的工作得到了瑞典林雪平大学?国家纳米科学中心?上海交通大学、以及华东师范大学精密光谱科学与技术国家重点实验室等课题组的帮助,非常感谢!

相关论文信息

论文原文刊载于CellPress细胞出版社旗下期刊Joule上

▌论文标题:

 

Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency

索比光伏网 https://news.solarbe.com/202101/18/334043.html

责任编辑:niupengzhen
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

中国石油再创钙钛矿电池效率世界纪录来源:钙钛矿材料和器件 发布时间:2025-12-05 14:27:36

通过持续的技术创新,团队成功攻克了薄膜材料广域带隙精准调控、高质量结晶工艺优化等一系列关键难题,先后3次刷新1.68eV宽带隙与1.50eV常规带隙钙钛矿电池的光电转换效率世界纪录。这一成果不仅标志着中国石油在钙钛矿电池技术领域实现了多路线布局,更使其跻身全球极少数掌握多种钙钛矿太阳能电池核心技术的企业行列。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

欧达光电获评浙江省钙钛矿太阳能电池重点企业研究院来源:钙钛矿工厂 发布时间:2025-12-05 08:59:37

12月3日,浙江省经济和信息化厅就2025年度重点企业研究院、企业研究院拟认定名单进行公示,拟认定浙江省可信数据智能重点企业研究院等211家省重点企业研究院和浙江省亿达时智能灯光企业研究院等1442家省企业研究院。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

大突破!柔性钙钛矿太阳能电池26.22%!南昌大学陈义旺&胡笑添&上交大颜徐州Nature大子刊!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-04 14:35:17

柔性钙钛矿太阳能电池实现了高效可弯曲能量转换,为下一代可穿戴设备提供了可能。然而,从实验室原型到工业规模组件的转化进程,受限于印刷过程中钙钛矿胶体颗粒的非均匀沉积,导致光电转换效率下降。

AEM:六氟环三磷腈配体实现阳离子均匀分布,器件效率超26%来源:知光谷 发布时间:2025-12-04 10:38:02

CsFAPbI基钙钛矿太阳能电池普遍存在Cs-FA阳离子分布不均的问题,导致结晶缺陷并降低器件性能。关键在于,HFPN能将FA锚定于薄膜底部,实现面外阳离子均匀分布,并消除钙钛矿层内的残余拉伸应力。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。