浅析光伏电站清洁机器人的应用现状

来源:太阳能杂志发布时间:2020-05-21 11:37:43

研究发现,地表颗粒及人类活动带来的积灰是影响光伏电站发电量的重要因素[1-5]。采用清洁机器人对潍坊市某分布式光伏电站的组件进行清洁,对比清洁前后的效果可以发现:大气环境良好时,该电站的日发电量可提升近20%;大气污染严重时,电站日发电量提升近40%。由此可见,组件的清洁度对发电量的影响至关重要。

我国自2012年开始对组件清洁技术展开研究,将国外先进技术与国内光伏电站相结合,研发出了多种机械式清洁技术。目前,机械式清洁(也称为“清洁机器人”) 主要包括单排清洁、跨排清洁和便携式清洁3 种技术路线,而跨排清洁和便携式清洁均由单排清洁技术演变而来。本文对上述3 种清洁机器人技术路线进行了系统地阐述,并对其应用现状进行了总结与展望。

1 清洁机器人的3种技术路线

1.1 单排清洁技术

单排清洁技术是指清洁机器人仅能完成一排光伏组件的清洁,不能越排。国内对该技术的研究最为深入,成果也较多,其中,高校和科研院所的研究主要集中在清洁机器人的结构设计和控制系统等方面。巫江等[6] 研究了一种采用新型凸轮式清扫机构的自动除尘装置,朱赵慧娟[7] 提出了一种绞缆式自动养护机器人;马磊等[8] 研究了清洁机器人的控制系统,并提出了电源、角度、位置等模块的控制原理;孙卫红等[9]、李园等[10]研究了清洁机器人的控制原理、组成及逻辑算法;王龙等[11] 研究了清洁机器人的零部件的轻量化设计。

目前,采用单排清洁技术并已得到产业化应用的产品主要分为3 个方向,分别以南京天创电子技术有限公司( 以下简称“南京天创”)、以色列的Ecoppia Scientific Ltd.( 以下简称“Ecoppia公司”)、南京索能多思智能科技有限公司( 以下简称“南京索能多思”) 等公司的产品为代表。

1) 以南京天创的产品为代表的清洁机器人目前应用最为广泛。生产该类产品的代表公司还有上海安轩自动化科技有限公司( 以下简称“上海安轩”)、山东豪沃电气有限公司( 以下简称“山东豪沃”)、北京中电博顺智能设备技术有限公司( 以下简称“中电博顺”) 等。该类产品由行走系统、导向系统、清洁系统、电池和控制系统组成。其中,行走系统的4 个行走轮对称布置在产品的上、下位置,用于完成前进和后退,4 个行走轮可共用1 台电机或每2 个行走轮共用1 台电机,中电博顺已实现“单轮单控”;导向系统主要用于产品的限位和导向,防止因速度过快而使产品超出组件边框。

该类产品的工作原理为:工作时,清洁机器人的行走轮沿组件边框行走,用于清洁的毛刷高速转动,且转动方向与行走轮的行进方向相反;毛刷在转动过程中,先将积灰从组件表面掸起,然后在毛刷的冲击和旋转气流的共同作用下将积灰驱赶至组件缝隙处脱落。

该类产品的优点在于可实时感知自身所在位置及电机、电池等核心部件的工作状态,人机交互功能良好,也可实现远程实时监控。但其最大的缺点在于行走系统对光伏组件安装精度要求苛刻,一旦组件出现高低落差、倾斜安装的情况,清洁机器人的行走轮很容易因行走不协调而导致“自锁”。各厂家都在探索解决该问题的方式,但目前仍未完美解决。比如,上海安轩研发了履带式清洁机器人,但履带的寿命及上、下履带的协调性并不理想;南京天创试图在安装清洁机器人之前先对组件进行调整,但因前期工程费用太高而无法进行推广;中电博顺的“单轮单控”技术提高了清洁机器人的越障能力,基本解决了“自锁”问题,但性价比不高。

2) 以Ecoppia 公司生产的Ecoppia 清洁机器人[12] 为代表。该清洁机器人是由横向行走轮、主体框架、纵向清洁装置、拖曳电机、电池和控制系统组成,典型特点是行走方向与清洁方向为正交,清洁机器人在行走方向上断续进行。该类产品的工作原理为:工作时,清洁机器人的横向行走轮沿专用导轨行走至未清洁的组件时停车;然后纵向清洁装置启动,通过超细纤维毛刷旋转并辅以气流吹扫,自上而下对积灰进行清洁;清洁完毕后,清洁机器人行走至其他未清洁的组件。该产品在沙尘较大的中东沙漠地区应用广泛,但由于其需要在横向行走路径上全程铺设导轨,价格昂贵,因此性价比不高。

3) 以南京索能多思的产品为代表。该类产品设计方案独特,由驱动与传感系统、输导装置、临时停车台、清洁装置组成。该产品的典型特色有2 点:一是清洁装置无需自主转动,仅依靠输导装置的钢丝绳拖动前行;二是整套设备仅使用1 台驱动电机,且驱动电机的电源取自其所在光伏阵列,并固定在阵列的某一端。

该类产品的工作原理为:工作时,驱动电机带动钢丝绳拖曳着清洁装置的毛刷和刮尘橡胶板将积灰向前推行,至组件间的缝隙时推落;当传感计数器达到阈值时,电机停止转动进入散热状态,此时设备正好到达停车台;散热结束后,驱动电机反转,设备进入“返回清洁”模式。由于单次清洁效果不明显,在一个清洁周期内通常需要多次清洁。

该产品在多数应用场景下具有较大优势,尤其是在大幅面光伏电站,如建于农业大棚上的光伏电站。目前,南京索能多思正在开展智能化、远程监控、闭环诊断等方面的研究,力图解决产品在行走打滑、由于预紧力丢失造成的行走不协调甚至钢丝绳断裂等方面的技术难题。

1.2 跨排清洁技术

已进行规模化应用的跨排清洁技术主要有车载清洁式和摆渡车式2 种。

1) 车载清洁式机器人多采用有水清洁,清洁装置安装在工程车上,由工程车实现前后的跨排清洁。该类产品的代表厂家为青岛昱臣智能机器人有限公司、重庆太初新能源有限公司等[13-14]。由于该类产品的体型笨重,因液压系统无法自适应复杂的地形地貌,清洁装置易对组件造成损坏,因此主要适用于我国西北部地势相对平坦的光伏电站,但这类地区水资源相对匮乏,因此使用该类产品有一定的局限性。

2) 摆渡车式清洁机器人主要由清洁机器人、摆渡车及轨道等附属设施组成。目前该类产品仅在少数分布式光伏电站应用,而在地面光伏电站的应用仍处于样机试验阶段,这是因为采用该技术的现场施工量大、施工周期长,对轨道载体的平整度要求高,复杂的环境和地形地貌会导致成本陡增,且设备易发生倾覆。该类产品受限于性价比、环境适应性及稳定性等问题,发展前景不乐观。

3) 除上述2 种已规模化应用的跨排清洁技术外,还有一种新研发但尚未量产的专门针对平单轴跟踪系统研发的跨排清洁技术。这一技术的典型特点是轨道安装在平单轴跟踪系统的转动轴上,完全摆脱了轨道对地面的依赖[15]。清洁时,首先由清洁机器人与平单轴跟踪系统交互确认,当平单轴跟踪系统与轨道角度一致时,清洁机器人从轨道行进至组件上进行清洁。该技术可适应前后排组件6 个自由度方向上的大范围偏差,对项目现场的施工质量包络性强,可匹配所有型号的清洁机器人,具备适用性广、制作成本低等特点。目前该技术也已展开相关样机的试验工作。

1.3 便携式清洁技术

分布式光伏电站存在障碍物多、排布不规则的问题,单排和跨排清洁机器人都无法完全清洁整个电站,但便携式清洁机器人可解决这一难点。

采用便捷式清洁技术的厂家有日本的SinfoniaTechnology Co., Ltd.( 以下简称“Sinfonia”)、深圳创动科技有限公司( 以下简称“深圳创动”)、深圳晟鑫科技有限公司等。该类产品具有对障碍物适应性强且随到随洗的特点,日益得到电站业主的青睐。

便携式清洁机器人是在组件表面爬行过程中通过高速转动的毛刷来对组件表面进行清洁,通过行走轮的转速差实现机器人的转向。为防止清洁机器人从组件上跌落,多以人工现场控制为主,个别厂家正在研发基于视觉跟踪系统的位置判断技术。

但便携式清洁机器人存在电池容量小的缺点,单块电池仅能清洁容量为0.8 MW 的组件;此外,在机器人清洁期间仍需要人工遥控指挥,智能化水平有待提高。

2 清洁机器人技术存在的问题及技术发展方向

2.1 存在的问题

目前,所有厂家都致力于提高清洁机器人的越障和抗“自锁”能力,并研发了多种方案,比如,分散驱动、新型传动技术、机体结构优化等,但还未找到高性价比的解决方案。

研究发现,当清洁机器人倾斜导致导向轮正压力过大及行走轮越障能力不足时,其易发生“自锁”。针对这一问题,一种可能的解决方案是:通过建立空间力系的平衡方程,优化毛刷分布密度、长度和硬度,行走轮直径和间距,导向轮数量、间距和直径,以及机器人框架的尺寸、驱动电机的输出扭矩等参数,并辅以电机控制算法,及时感知和调整行走轮状态,避免产生“自锁”。

2.2 技术发展方向

对光伏组件进行清洁的清洁机器人技术的发展方向主要体现在以下几个方面:

1) 细分应用场景:针对光伏电站的形式研发适用于不同应用场景的清洁机器人,场景可细分为大倾角式、平铺式、大幅面平铺式、平单轴跟踪系统等。

2) 深入优化设计:研发方向集中在轻量化设计、零部件选材、驱动方式及算法、充电方式、越障算法等方面。

3) 智能化:为清洁机器人建立云平台,共享设备运行参数、电站发电量、大气环境等大数据,辅以机器自学习算法,以提高设备的智能化。

3 结论

本文针对用于光伏组件清洁的清洁机器人,介绍了单排清洁、跨排清洁和便携式清洁3种技术路线,并阐述了各种技术的优、缺点;最后对清洁机器人的发展方向进行了展望。

索比光伏网 https://news.solarbe.com/202005/21/325162.html

责任编辑:qypsolarbe
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
浙江大学薛晶晶Nat Rev Chem:有机A位阳离子在金属卤化物钙钛矿光伏中的应用来源:知光谷 发布时间:2025-12-01 15:56:27

有机A位阳离子丰富的选择性和可设计性,为通过化学相互作用调控金属卤化物钙钛矿的多种性能提供了巨大机遇。结构-性能关联机制:系统阐明了A位阳离子的分子结构如何影响其与钙钛矿骨架的相互作用,并最终决定器件的效率与长期稳定性,为理性分子设计提供了理论基础。低维/3D协同策略:通过引入大尺寸有机阳离子构建2D/3D钙钛矿异质结构,在保持高效率的同时,显著提升了器件的环境稳定性与离子迁移抑制能力。

四川:规模较小的地面光伏电站项目归于集中式光伏电站管理来源:四川省发展和改革委员会 发布时间:2025-11-27 11:30:59

11月26日,四川发展改革委员会新能源和可再生能源处答复咨询者关于“规模较小的地面光伏电站项目备案管理程序”相关问题。答复:国家能源局《分布式光伏发电开发建设管理办法问答》第18问明确,小型地面电站光伏发电项目归于集中式光伏电站管理,并按照各省能源主管部门对于集中式光伏电站的有关管理要求执行。

TÜV南德受邀出席 CREC 2025 发表光伏清洁机器人适配性实证,筑牢电站效益 “防护墙”来源:TÜV南德光伏检测认证 发布时间:2025-11-19 09:36:30

近日,由无锡市人民政府和中国国际商会主办的第十七届无锡国际新能源展览会(以下简称“CREC 2025”)暨“全球新能源产业发展峰会”在无锡圆满落幕。TÜV南德意志集团(以下简称“TÜV南德”)受邀出席本次大会,与行业专家学者围绕光伏产业痛点、技术创新方向展开深度交流,分享前沿实践经验。

中国科学院长春应用化学研究所秦川江Science:钙钛矿光伏用稳定均匀的自组装有机二自由基分子来源:矿物薄膜太阳能电池 发布时间:2025-11-17 09:15:04

全文速览近日,中国科学院长春应用化学研究所等单位联合在钙钛矿太阳能电池中开发了两种开壳层双自由基自组装分子,通过给体-受体共面共轭策略和位阻保护设计,同步解决了钙钛矿太阳能电池中空穴传输层的导电性、稳定性与大面积加工均匀性难题。开壳层分子通过多重共振结构稳定,呈现分子内自由基离子对状态。展示了组装密度分布图,通过SECCM-TLCV空间映射显示RS-1与RS-2的组装密度更高且分布均匀,证明双自由

一道新能“组件天团”集结!谁是你心中的光伏应用场景MVP?来源:一道新能 发布时间:2025-11-03 09:50:44

谁是你心中的光伏应用场景MVP?

武汉大学闵杰教授团队Joule综述:从非富勒烯受体分子设计到产业应用的有机光伏技术发展蓝图来源:知光谷 发布时间:2025-10-29 08:59:58

这种综合评估理念正在逐步获得学术界与产业界的广泛认同,为推动技术的实用化发展提供了重要指导。研究表明,非富勒烯受体材料的降解主要源于光氧化和分子异构化等机制。然而,近期的研究表明形貌演变更多地受动力学机制支配。

丰郅直流汇流箱监控系统:光伏电站安全与效率的“神经中枢”​来源:丰郅新能源 发布时间:2025-10-24 08:49:54

行业数据显示,2025年预计将有约60%的汇流箱产品具备智能监控和远程管理功能,这有助于提升系统运行维护效率。丰郅汇流箱产品介绍该产品拥有LCD屏读取数据,同时具备组串电流监测、电压监测、汇流箱温度监测、断路器状态检测、电弧报警等功能,多种规格霍尔传感器、最大支持级联24个通道,支持RS485通讯。

1.33MW钙钛矿分布式应用示范光伏电站项目备案通过来源:钙钛矿光链 发布时间:2025-10-22 16:06:52

2025年10月21日,山东新升实业发展有限责任公司中科光电1.33MW钙钛矿分布式应用示范光伏电站项目备案通过。

绿能中环焦健:AIoT技术驱动光伏电站运维变革来源: 发布时间:2025-09-25 17:14:01

当前电站资产运营核心在于构建线上线下一体化(O2O)的运维模式。线上实现人、材、物的集约化管理,线下执行标准化的安全评价、巡检和检修流程,最终通过一体化调度实现降本增效。

光伏电站的“隐形危机”与破局之道来源:索比光伏网 发布时间:2025-09-24 09:15:31

更令人忧心的是,每株杂草顶端饱满的草籽,随风四散飘落,在裸露的土地上扎根繁衍,仿佛在高调宣告着对光伏电站的“攻城略地”。十年来,“傲杀”始终专注于工业场合杂草治理,研发出多款效果持久、环境友好、节能降耗的技术方案,已赢得数百家光伏电站用户的信赖与认可。

漂浮式光伏电站的升级尝试——跟踪式水上光伏电站来源:Noria Energy, SolarP 发布时间:2025-09-04 09:52:35

据美国媒体报道,美国NoriaEnergy公司正在科罗拉多州的Golden建造一座50kW的跟踪式水上光伏电站试点项目。他们新推出的AquaPhi跟踪式水上光伏系统,采用水下推进器驱动整个浮岛在水平方向旋转,保持光伏组件的方位角始终朝向太阳,据其称可提升发电量10~20%。早在2017年,也就是NoriaEnergy成立前一年,就有媒体报道韩国的Solkiss公司已完成一座467kW的“旋转式水上光伏电站”,还将建造一座2.67MW的世界最大的“旋转式水上光伏电站”。