全钙钛矿串联太阳能电池,效率高达24.8%

来源:科技报告与资讯发布时间:2019-10-17 14:05:57

中国南京大学和加拿大多伦多大学的一组研究人员最近制造了全钙钛矿串联太阳能电池(PSC),这是一种具有关键钙钛矿结构成分的太阳能电池。在Nature Energy的一篇论文中介绍的这些新太阳能电池可实现卓越的效率,优于其他现有解决方案。

该研究的首席研究员Hairen Tan说:“这项研究工作的最初想法是制造比单结钙钛矿太阳能电池更高效的全钙钛矿串联太阳能电池。”

钙钛矿是与钙钛矿具有相同晶体结构的一组矿物,钙钛矿是一种黄色,棕色或黑色的矿物,主要由钛酸钙组成。在过去的几年中,世界各地的多个研究团队一直在尝试使用这种材料开发太阳能电池,通常利用宽带隙(1.8 eV)或窄带隙(1.2 eV)的钙钛矿。

制造全钙钛矿串联太阳能电池,从而将宽禁带和窄禁带钙钛矿组合在一起,可以产生比单结电池更高的功率转换效率(PCE),而不会增加制造成本。然而,为了构建这种新型的太阳能电池,研究人员需要找到一种方法来增强每个子电池的性能,同时还要将宽带隙和窄带隙电池进行协同集成。

“不幸的是,以前报道混合的Pb-Sn窄带隙钙钛矿太阳能电池都表现出低的效率(PCE18-20%)和低的短路电流密度(j SC 28-30毫安/厘米2),” Tan说。“它们远低于其潜力,也低于最佳的基于铅的单结钙钛矿电池的性能。”

在先前开发的窄带隙钙钛矿太阳能电池中观察到性能差的主要原因是其关键成分之一,即Sn 2+,容易氧化成Sn 4+。结果,所得的细胞膜显示出高的陷阱密度和短的载流子扩散长度。在研究中,Tan和他的同事们希望找到可以帮助克服这一局限性的解决方案。

Tan说:“我们这项工作的主要目标是启动一种策略,以扩大窄带隙钙钛矿型太阳能电池的扩散,从而获得性能更好的串联式太阳能电池。Sn空位通常是由于在混合的Pb-Sn钙钛矿中掺入Sn 4+(Sn 2+氧化产物)引起的。我们认为,一种防止前体溶液中Sn 2+氧化的新策略可以大大改善电荷载流子的扩散长度。”

Tan和他的同事介绍了一种新的化学方法,该方法最终可以提高PSC的性能。该方法基于补偿反应,该反应导致混合的Pb-Sn窄带隙钙钛矿的电荷载流子扩散长度显着提高。

先前提出的方法均以亚微米扩散长度为特征,这会损害电池的整体效率。另一方面,Tan和他的同事在他们的工作中实现了3μm的扩散长度。一项非凡的成果,使打破性能记录的Pb-Sn电池和全钙钛矿串联电池成为可能。

Tan解释说:“我们通过开发一种锡还原的前体溶液策略实现了这一目标,该策略通过前体溶液中的歧化反应使Sn 4+(Sn 2+的氧化产物)返回到Sn 2+。”

含锡钙钛矿的氧化一直是开发具有钙钛矿成分的太阳能电池的关键问题,因为它会负面影响其性能,从而阻碍其在各种环境中的应用。Tan和他的同事们采用的新化学方法为使用含锡窄带隙钙钛矿制造串联太阳能电池提供了另一种途径,从而使电池更稳定,更高效。

他补充说:“我们的工作还表明,含锡钙钛矿的电子质量可以与已证明其效率和晶体硅电池相似的卤化铅钙钛矿的电子质量相媲美。毫无疑问,我们的串联方法最终将为我们提供一种非常便宜但高效的太阳能设备的途径。”

在他们的研究中,Tan和他的同事使用他们的化学方法制造了整体式钙钛矿串联电池,然后测试了它们的性能。他们发现,其串联电池获得了非常好的效率,小面积设备(0.049 cm 2)约24.8 %,大面积设备(1.05 cm 2)约22.1%。

此外,在完全的一次阳光照射下,电池在最大功率下运行400小时以上后,仍可保持90%的性能。将来,这组研究人员介绍的方法可能会为开发更高效,更具成本效益的太阳能设备提供信息。

Tan说:“我们现在计划进一步将全钙钛矿型串联太阳能电池的功率转换效率提高到28%以上。实现这一目标的第一种可能方法是减少宽带隙钙钛矿太阳能电池中的光电压损失。另一种可能性是减少隧道复合结中的光损失。”


索比光伏网 https://news.solarbe.com/201910/17/315487.html
责任编辑:fuping
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
34.07%!众能光储实现钙钛矿/晶硅叠层电池效率新突破来源:钙钛矿光链 发布时间:2026-02-06 09:25:31

近日,无锡众能光储自主研发的钙钛矿/晶硅异质结叠层电池,经TV北德认证光电转换效率达34.07%,跻身全球前列。碳基领跑:碳基实验线效率24%,团队在碳基钙钛矿电池效率方面先后四次打破领域记录,处于世界领先水平。叠层突破:HJT/钙钛矿叠层电池效率TV认证效率34.07%,跻身全球前列,深度融合自主研发的空间钙钛矿能源路线,为航天等高端应用场景的产业化落地奠定了坚实的工艺基础,并构建起完整的系统解决方案。

瑞士屋顶光伏服役30年,发电效率仍超八成来源:能源转型与双碳观察 发布时间:2026-01-29 09:18:56

瑞士研究团队发现,热量是影响电池板寿命的关键因素。封装胶膜老化会产生易引发腐蚀的化学物质,进而导致电池板发电效率下降。该研究对房主与电网的意义若光伏电池板在使用超30年后仍能保持较高发电效率,将彻底改变太阳能作为投资的成本效益计算。此外,这一发现还关乎气候保护与公众健康。对“长寿命”的客观认知该研究并非表明所有光伏电池板都能以最小的损耗运行超过30年。

突破55W/g!我国新型钙钛矿空间光伏技术刷新“功质比”世界最高纪录!来源:钙钛矿工厂 发布时间:2026-01-29 08:47:41

量级革命,刷新人类光伏功质比最高纪录钙钛矿太阳能电池凭借其卓越的光电特性,成为制备高功质比器件的理想载体。公司科研团队自2019年起深耕大功质比超轻量柔性钙钛矿技术领域,历经数年技术攻关,多次刷新行业纪录。

27.87%!光因再破单结钙钛矿电池效率天花板来源:光伏前沿 发布时间:2026-01-26 09:17:45

光因科技此次突破,不仅大幅拉开了与晶硅技术的差距,更为全钙钛矿叠层电池突破35%的转换效率预留了充足空间。

33.45%!琏升科技异质结/钙钛矿叠层电池效率再攀新高峰来源:琏升科技 发布时间:2026-01-23 09:09:45

由琏升科技研发的钙钛矿/晶硅异质结叠层电池再次实现里程碑式效率跃升——经国家太阳能光伏产品质量检验检测中心权威认证,转换效率从32.99%提升至33.45%。这一效率突破的核心在于琏升科技对HJT底电池的深度重构和钙钛矿顶电池界面工程的升级。因此,异质结及异质结叠层电池具备“高效、轻质、低成本、柔韧、抗极端环境”等特性,有望成为平衡高效率与低成本的下一代技术路线。

协鑫集成申请钙钛矿电池界面修饰层结构专利,抑制非辐射复合提升电池效率来源:金融界 发布时间:2026-01-23 08:32:49

国家知识产权局信息显示,协鑫集成科技股份有限公司;芜湖协鑫集成新能源科技有限公司申请一项名为“钙钛矿电池及其制备方法、叠层电池和光伏组件”的专利,公开号CN121368259A,申请日期为2025年10月。通过天眼查大数据分析,协鑫集成科技股份有限公司共对外投资了32家企业,参与招投标项目504次,财产线索方面有商标信息21条,专利信息304条,此外企业还拥有行政许可45个。

32.38%效率认证!迈为股份实现G12H钙钛矿/晶硅异质结叠层电池关键突破来源:迈为股份 发布时间:2026-01-21 17:08:36

近日,经中国计量科学研究院权威认证,迈为股份采用自主研发的可量产设备与工艺,成功研制的钙钛矿/晶硅异质结叠层电池,光电转换效率达到32.38%。公司与苏州大学、北京工业大学等高校团队合作,成功开发出认证效率高达33.6%的柔性钙钛矿/晶硅异质结叠层太阳能电池。

大哲光能钙钛矿项目获批来源:钙钛矿光链 发布时间:2026-01-20 11:01:49

据浙江政务服务网公示信息,1月15日,嘉兴大哲光能有限公司钙钛矿太阳能电池研发项目完成备案。

天合光能以“全矩阵”技术,持续引领光伏效率革命来源:天合光能 发布时间:2026-01-19 16:45:19

1月14日,天合光能光伏科学与技术全国重点实验室宣布,其大面积钙钛矿/晶体硅叠层组件功率以886W刷新世界纪录,并在钙钛矿/p型异质结叠层电池研发效率上取得重大突破。这是公司累计第38次创造或刷新世界纪录,不仅彰显了中国在下一代高效光伏技术领域的里程碑突破,也标志着其在面向太空应用的高效能源技术领域取得关键跨越。

牛津光伏:计划到2028年实现钙钛矿叠层组件效率达27%、寿命达20年的目标来源:钙钛矿工厂 发布时间:2026-01-19 09:23:53

近日,钙钛矿太阳能光伏领先公司牛津光伏(Oxford PV)表示,随着可靠性和光电转换效率的持续提升,计划于2028年将其钙钛矿/晶硅叠层太阳能组件产品实现批量化生产。

协鑫集成王皓正:三端钙钛矿叠层电池破局效率天花板,产业化落地进入攻坚期来源:索比光伏网 发布时间:2026-01-14 14:57:04

1月14日,碳索2025·第四届光能杯创新分享会在苏州举行,协鑫集成研发总监王皓正博士发表主题演讲,深入解析“钙钛矿叠层电池产业化的必然趋势”,系统阐述三端叠层架构的技术优势、工程化难点及突破路径,为行业突破效率天花板、实现高质量产业化提供关键思路。

新闻排行榜
本周
本月