技术|科技先锋:叶绿素太阳能电池

来源:网络发布时间:2019-04-12 11:02:04

目前,全球每年至少要消耗13太瓦(1太瓦=1万亿瓦)能源。石油等化石能源的不可再生性,决定了人们必须寻找其替代品。

功率达12万太瓦的太阳便进入了人们的视线。理论上,只要收集1小时的太阳能,就可满足人类全年的能源需求。

为了有效地收集太阳能,人们尝试了各种方法,比如开发大面积、高效、低成本的太阳能电池。目前已有产业化的晶体硅(单晶硅、多晶硅)太阳能电池,部分投产的薄膜电池(非晶/微晶硅硅基薄膜、碲化镉和铜铟镓硒),以及主要处于研究中的染料敏化电池、有机薄膜电池等。

一种叶绿素太阳能电池,因为尽可能模仿了自然界中的光合作用而备受关注。

从阳燧取火到太阳能电池

说起来,人类利用太阳能的历史古已有之。公元前9世纪,中国人开始用“阳燧”(凹面镜)聚光取火。公元7世纪,开始使用凸透境聚集太阳能取火。

到了近代,太阳能的利用变得普遍。1950年代,太阳能利用领域取得两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项突破为太阳能利用的普遍应用奠定了技术基础。

1970年代以来,鉴于常规能源供给的有限性和环保压力的增加,许多国家掀起了开发利用太阳能的热潮。

几十年时间,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。比如,晶体硅(单晶硅、多晶硅)太阳能电池目前已有广泛产业化规模,薄膜电池也有部分投产。

目前,要想大规模地推广太阳能技术,光能转化效率和能量的有效储存是两个绕不开的大难题。

晶硅电池的光电转换效率理论上最高可达32%,目前产业化水平在14%-18%之间。但居高不下的制造成本,大大限制了其使用范围。目前晶硅电池的理论使用寿命是20年(实际运营中还要考虑到电池面的清洁,以及恶劣天气带来的意外损伤等情况),在全使用期的发电售价约为同期传统电价的2倍。

一些新开发的高效率太阳能电池面板造价更为高昂。比如,一种转化效率高达41%的复合型光合电池,10厘米见方造价就达数千美元,而电压仅为0.5伏。连发明这种电池的德国夫琅禾费太阳能研究所所长艾克韦伯都认为:“这样高的价格,真要买来安装,谁都会犹豫的。”

此外,如何储存能量也是难题之一。

自然界的光捕捉系统

有没有一种方法能够有效避免如上难题?

实际上,自然界一直有一套太阳光捕捉系统,从第一个绿色生命诞生算起,这套系统已经运转了27亿年。这就是光合作用。

目前德国科学家研究发现,一种叫做LHC一Ⅱ的膜蛋白在绿色植物中含量最为丰富,被视为捕光复合物。这是一个具有典型正20面体对称特征的空心球体,其中布满了色素分子,以便吸收光能并进行传递。

这些色素分子,包括叶绿素a(Chlorophylla)、叶绿素b(Chlorophyll b)、类胡萝卜素(Carotenoids)等。目前已知的是,在漫长的进化历程中,植物只选择了吸收红光的叶绿素a和吸收蓝紫光的叶绿素b捕捉光。

近来研究发现,为了应对弱光环境,有些植物还衍生出了吸收长波光线的色素。2010年,研究人员在西澳大利亚鲨鱼湾的一个藻青菌菌落中偶然提取到这种叶绿素,将其命名为叶绿素f。它能够吸收红光和红外光,波长范围为0.7微米到0.8微米(红外线的波长是0.77微米-1000微米,分为近红外、中红外)。

从以叶绿素为主的捕光系统到光反应中心,再加上10种辅助因子(如锰、铁、镁等)的共同作用,光合作用这个复杂且精巧的系统,把光转化成电,再转化为固定状态化学能,一气呵成。

利用光合作用造电池

近些年,科学家们开始尝试利用光合作用原理研制电池。比如将植物里的叶绿素提取出来,放到人工制备的膜里,光照时就会产生电。这就是叶绿素电池。

2004年,有报道说美国科学家已利用菠菜提取的蛋白质造出了叶绿素电池。他们从菠菜中分离出能够捕捉光的蛋白质,并且把它们放入两层导电材料之间。当有光照射到这个微型装置的时候,电流就产生了。

但是,这些蛋白质分子非常脆弱,当其被从天然环境中移走之后,常常无法继续工作。所以科学家把它们混合在一种叫做缩氨酸表面活性剂的很像肥皂的分子中。这些保护分子在这些产生能量的蛋白质周围形成一层保护膜,使其就像仍在植物环境之中。

蛋白质被放置在薄薄的金片上,附上一层导电的金属,顶层是导电的有机材料。当光照射在这个“假三明治”上,蛋白质就会释放电子,传到下一层的金属层形成电流。

专注于太阳能开发的美国加州理工学院的刘易斯教授指出,“我们希望设计出与绿叶光合作用尽可能相似的过程。”言下之意,就是要实现收集太阳光的功能,但其结构又要尽量简化。

2006年,澳大利亚悉尼大学的马克斯。克鲁斯雷教授科研组制造出了一个形状像足球的合成叶绿素分子,是一个由碳、氢、氮合成的高度分岔的纳米聚合体。粘附其上的是人工合成的色素卟啉(促成叶绿素进行光合作用必不可少的元素,位于镁离子的中心)。利用合成叶绿素,克鲁斯雷和他的科研组建造一个有机太阳能电池的雏形。希望最终能制造出比现有太阳能电池更有效的电池。因为绿叶能有效地将30%-40%的光能转变成电能。

克鲁斯雷说:“我们已经拥有了模仿光电设备或太阳能电池的主要成分。从长远来看,我们必须设法生产出一种能像薄薄的一层油漆那样,简单地涂抹在屋顶上的东西。”他表示,科研组还希望能制造出存储装置,用来代替以金属为基础的电池。

实际上,真正的叶绿素太阳能电池,因为“人造绿叶”的难度,目前仍处于研究阶段,但模仿光合作用原理的电池已经制造出来,这就是染料敏化电池。自从1991年瑞士洛桑高工(EPFL)M. Gratzel(迈克尔·格兰泽尔)教授领导的研究小组在该技术上取得突破以来,欧、美、日等发达国家已投入大量资金研发。

上海大学材料学院研究人员杨伟光表示,染料敏化电池是用敏化剂类人工合成染料代替了植物中的叶绿素。目前,英国G24 Innovations公司已经具备30兆瓦的生产能力,并生产和出售电池组件产品,转化效率在6%以上。另有瑞士Solaronix、以色列3Gsolar等公司专门生产和出售染料敏化太阳能电池原料,如染料、浆料、电解质、电极材料等。杨伟光说,目前染料敏化电池组件最高效率达10%左右。这个记录是日本夏普公司创造的。“但只在研发阶段,没有商业产品。”

国内染料敏化电池的研制和产业化也有起步。据杨伟光介绍,目前除了高校和科研院所的研发,彩虹集团技术中心(北京)是目前国内唯一一家染料敏化电池的企业研发中心。而在产业化方面,2009年中船重工国营汉光机械厂(邯郸)与中国科学院化学所合作总投资1.5亿元,进行全国首个“染料敏化太阳能电池”产业化项目,但至今仍无产品出售。另有报道称,2011年11月19日,国内首个新型染料敏化太阳能电池项目已在青岛高新区胶州湾北部园区投产。

索比光伏网 https://news.solarbe.com/201904/12/305283.html

责任编辑:yangran
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

中节能&宁夏海原县:签署500MW光伏项目开发协议来源:智汇光伏 发布时间:2025-12-09 09:29:18

12月3日,中节能太阳能股份有限公司与宁夏自治区中卫市海原县人民政府签订光伏项目投资框架协议,双方就合作推进建设一期500兆瓦光伏发电项目达成一致意向并展开深入交流。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。