选择不同的MPPT路线,对系统发电量有一定的影响,从解决失配的问题角度来说,1个MPPT后面的组串越少越好,因为每个MPPT回路都是独立运行的,系统设计灵活性更大。 从稳定性和效率上来说, 1个MPPT后面的组串越多越好,因为MPPT数量越多系统成本越高,稳定性越差,损耗越多。
光伏系统最常见的故障就是直流侧故障,熔丝常见失效模式分为过电流熔断、老化熔断、过温熔断。过电流熔断是在过载、短路等超出额定的情况下发生的保护性熔断;老化熔断是指在长期的工作中,由于自身老化,截流能力下降,在没有过流的情况下发生的故障性熔断;熔丝的电流和温度有很大关系,熔丝如果在高温下工作,截流能力下降,发生故障性熔断可能性比较大。
一个MPPT配置1到2路组串,即使某一路组件发生短路,总电流也不会超过15%,因此不需要配置熔断器 ,一个MPPT如果配置N路(N≥3)组串,某一路组件发生短路,这一路组串就会出现(N-1)*短路电流,这时候就需要配置熔断器。经过理论分析和多年的实践,证明这个方法是正确的,原理如下:
如上图所示,一个MPPT接两路组件,分别为S1和S2,当S2某个地方发生对地短路,由图可以看到,S2的负极电流不经过熔断器流向接地点,S1的负极电流经过公共汇集点和S2的熔断器流向接地点,熔断器的总电流不超过额定电流的15%,达不到熔断的条件,也不会有火灾隐患,因此不需要熔断器。
当一个MPPT如果配置N路(N≥3)组串时,短路电路就会增加。
如上图所示,一个MPPT接三路组件,分别为S1、S2和S3,当S3某个地方发生对地短路,由图可以看到,S3的负极电流不经过熔断器流向接地点,S1和S2的负极电流经过公共汇集点,和S3的熔断器流向接地点,熔断器的总电流为短路电流的2倍,达到熔断的条件,会有火灾隐患,因此多路组串需要配置熔断器来保护。
结合实际,科学设计,根据不同的地形,组件遮挡情况,选择不同MPPT架构的逆变器,降低电站采购成本和维护成本,提高经济效益。
(1)平地无遮挡,光照条件好的地区,建议选择单路MPPT,单级结构的逆变器,可以提高系统可靠性,降低系统成本,如古瑞瓦特Growatt 50K-60KTL3-HE系列的逆变器;
(2)地形复杂山丘电站,如领跑者基地等大型电站,存在朝向不一致和局部遮挡的现象,且不同的山丘遮挡特性不一样,带来组件失配问题,不得不选择多路MPPT,那么每路MPPT 2个组串输入的逆变器会是较好的选择,无熔丝易损件、故障定位准确度高,维护更简单;如古瑞瓦特MAX 60K-100K TL3系列的逆变器。
(3)地形不是很复杂山丘电站和屋顶电站,没有组件遮挡,建议选择一路MPPT配置多个组串的逆变器,可以兼顾组串失配和高效率,设计更灵活。如古瑞瓦特Growatt 30-50KTL3-S系列的逆变器。
责任编辑:肖舟