首页 资讯信息 研究咨询 服务应用 展会会议 视频图片 期刊专栏 新媒体
关闭
关闭

效率超过20% 量产PERC电池是怎样炼成的?

发表于:2018-07-03 15:18:16     来源:孙恩来

单晶硅PERC电池

由于PERC电池背面的表面复合速率已经被大幅度降低,而二极管复合速率也已经通过将金属覆盖面积从传统全BSF的100%降低到只占局部BSF背面一小部分区域得到了大幅度降低,使用商用单晶硅片的太阳能电池效率直接提升至了20%以上,远高于全覆盖BSF单晶硅电池的大于19%的基线。图三显示了一块效率为20.25%的PERC太阳能电池[14]以及一块效率为19.1%的全覆盖BSF太阳能电池的归一化外部量子效率(EQE)曲线。图中的绿色区域代表的是标准太阳光谱(大气质量1.5global-AM1.5G)的光通量大小,它由EQE测量光谱的波长决定。


如图三所示,虽然这两个样品在短波光区域的EQE差别不大(因为这两个电池样品在前表面的器件结构是相同的),但在长波光区域的差异却非常明显。PERC电池在长波光区域的光谱响应有着明显的优势,这是提高电池转换效率非常关键的因素,因为更多被这个波段的光子激发的载流子可以被收集,从而大幅度减少AI2O3背钝化区域附近和金属电极区域的光生载流子复合。图中的黄色区域则描绘了光通量之差(~9.3×1016/cm2),意味着在一个太阳(AM1.5G)光照的短路连接条件下有更多的载流子流出电池。量子效率的提升不但将短路电流密度(J2sc)提升了大约~1.5mA/cm,同时也将PERC电池的开路电压提高了10.0mV以上。其结果是PERC电池的绝对效率比全覆盖BSF电池高出1%。


为了展示工业研发的真实结果,图四给出了从多次实验中随机抽取的一次实验得到的系列电池参数结果:图中显示了关键电池性能参数,包括开路电压(Voc)、短路电流(Isc)、填充因子(FF)和转换效率(η)的变化。在本次实验中,一批总数为400块的全方块单晶硅片被平均分为4组,每组电池都施加不同的工艺条件。从图中可以看出每组电池的平均效率都在20.5%以上。值得注意的是,尽管本次实验中的每个电池片组被施加于稍微不同的工艺条件,但它们却得到了几乎相同的转换率,这表明PERC电池的工艺容错度是相当大的。

多晶硅PERC电池

由定向铸造法制得的多晶硅片因其相对较差的晶格质量,传统上被认为只适合于制造低成本但质量普通的太阳能电池。在过去几年,得益于定向晶粒凝固法的发展,拥有统一晶粒尺寸和较低位错密度的高质量多晶硅硅片已经实现了产业化并商用[15-17]。由这些高质量多晶硅片制得的太阳能电池的效率比正规多晶硅片制得的电池效率平均高出~0.3-0.5%。例如,在晶澳太阳能的大规模生产中使用这种硅片的电池平均转换效率目前能达到~18.0±0.1%。

目前我们将多晶硅太阳能电池基准效率设定为18%。但在2014年上半年,通过在高质量多晶硅片上采用与上述单晶硅电池相同的PERC技术工艺,我们将多晶硅太阳能电池的平均转换效率提高到了19%以上。为了进一步提高电池质量,晶澳太阳能提出了具有先进知识产权的陷光方案,以解决传统多晶硅片酸性制绒表面的高反射率问题。多晶硅电池的平均效率因此得到了逐步提升,最近更是达到了20%以上。


图五显示了从一批这种多晶硅PERC电池上抽取的单块样品测得的I-V特性;其转换效率为20.1%。这批总数为1600片的电池被平均分成4组,图五的内图显示了这些电池的效率分布情况。可以看到图中的电池效率分布较宽散,这对于多晶硅电池来说并不奇怪,主要原因是多晶体的晶格质量变动较大,即便所使用的是高质量硅片。尽管如此,对于硅光伏行业来说大约20%的平均转换效率仍然是值得称道的成绩。

在本实验中,电池的绝对效率提升了1%,主要得益于将具有知识产权的陷光方案集成在硅PERC电池制造流程中;其主要作用是大幅度降低多晶硅电池表面的反射率。图六显示了PERC电池的EQE图和反射曲线,并与效率只有18%的传统多晶硅电池进行比较。从图中可以看出,将陷光方案集成到PERC结构后,在Al金属层的钝化作用下,电池的光谱响应发生了显著改变,从而有效提升电池Isc和Voc。

结论

为了验证电池的设计效果和相应的制造工艺,并判断设备是否能改装成现代大规模生产平台,最重要的是持续提升电池性能和测试电池的可靠性,到目前为止我们进行了多次实验并总共制造了超过100,000片电池。本研究工作中报告的商用版本丝网印刷PERC电池展现了比传统全覆盖BSF电池更优异的性能,不管使用的是单晶硅片还是多晶硅片(用这两种硅片制得的太阳能电池的平均效率分别超过了20.5%和20.0%)。

在PERC电池生产中,依靠在硅电池背部增加AI2O3介质钝化层或者是AI2O3/SiNx叠层,以及激光开槽局部接触电极(LBSF)结构,不需要依赖最高质量的P型硅片就能将电池效率提升1%。不仅如此,该工艺还能用在传统硅太阳能电池制造平台上,并且不必大规模改变电池工艺流程。值得注意的是,通过依靠Al2O3而无需将硅片放置于高温热氧化环境中就能取得优质的钝化效果,这也大大降低了制造晶片硅太阳能电池所需花费的成本。使用短脉冲激光消融接触槽的工艺完全能与丝网印刷电池制造平台兼容。当然,正确选择沉积方法和设备,包括激光消融设备以及将它们顺利地集成到现有电池生产线中,同时优化工艺参数,是能大规模制造PERC电池时的关键所在。幸运的是,得益于高产能AI2O3沉积设备和脉冲激光加工设备的快速发展和商业化,要成功实现上述关键点已经变得容易得多。

最后需要指出的是,目前全球超过90%的光伏组件都是采用晶硅片技术制造的。而这些组件中的大约35-40%又是采用提拉法单晶硅片制造的,剩余60-65%则是采用定向凝固法多晶硅锭制造的。在这些组件中,有超过95%都是采用P型硅片,占据了全球太阳能发电的主导。因此,随着PERC电池性能的持续提升,将PERC器件结构应用在主流P型硅基太阳能电池上将会成为未来数年的主流技术趋势。

特别声明:
索比光伏网所转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe

投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com

扫码关注

    投稿与新闻线索联系:010-68027865 刘小姐 news@solarbe.com 商务合作联系:010-68000822 media@solarbe.com 紧急或投诉:13811582057, 13811958157
    版权所有 © 2005-2023 索比光伏网  京ICP备10028102号-1 电信与信息服务业务许可证:京ICP证120154号
    地址:北京市大兴区亦庄经济开发区经海三路天通泰科技金融谷 C座 16层 邮编:102600