谁是双面组件的“最佳拍档”? ——解密最高效率、最佳适配的双面组件逆变器及方案设计

来源:索比光伏网发布时间:2018-02-23 13:44:01

当下广受行业追捧的高效组件技术非双面组件莫属,但再高效的组件仍需逆变器等设备与之匹配才能充分释放价值。

最近业内“忽如一夜春风来”出现了很多匹配双面组件的逆变器,那么究竟哪款才是双面组件真正的“最佳拍档“呢?本文从大量的实证数据出发,为读者揭开双面组件最优匹配逆变器的神秘面纱。

01什么是双面组件

目前市场上的双面组件使用的电池技术主要有基于p型硅片的PERC技术,基于n型硅片的PERT技术和异质结结构的HIT技术。


图1 双面组件与常规组件

如图1所示,除了正面接收太阳辐射外,双面组件背面也可以接收来自空气中的散射光、地面的反射光以及每天早晚来自背面的太阳直射光。因此双面组件的发电量与相同电站设计的单面组件相比有一定的增益。


图2 双面组件来自背面的发电量增益

我们采用结构相同的单面和双面组件进行了长期测试,可以看到双面组件来自背面的发电量增益与场景密切相关,发电量提升5%~39%不等。此外,基于弱光响应好、工作温度下功率损失小的优异性能,双面组件还可以进一步提升发电量至2-6%。

综合来讲,双面组件相对常规组件的发电量增益在图2列出的场景一般为7%~45%。

02双面组件需要怎样的逆变器?输入电流能力更强,效率更高

下图为某知名厂家正面功率为300W的双面组件部分参数,可以看到随着双面增益的增加,开路电压和峰值功率电压基本不变,而组件峰值功率和峰值功率电流变大。

这就要求设计人员根据项目实际增益情况选择直流侧输入电流更大、更合适的逆变器。



华为SUN2000-75KTL-C1双面组件专用逆变器每路MPPT电流25A(见下表),完全满足双面组件输出电流变大的应用需求,且98.58%的中国效率问鼎行业。

 

MPPT颗粒度更细


图3 双面组件背面增益因位置不同差异大

如图3所示,双面组件背面辐照不均匀,导致组件最终输出总体功率不同,组件电流离散率达到5%以上。这就要求逆变器MPPT颗粒度更细,另外在设计组串和组串接入逆变器时应尽量避免不一致造成的失配损失。

华为SUN2000-75KTL-C1双面组件专用逆变器每2串一路MPPT,是业界MPPT颗粒度最细的逆变器,最大程度地减少双面组件带来的失配。经PVSYST仿真2串一路MPPT的逆变器较常规逆变器在双面组件系统中失配损失低1.1%。

自适应、更精准、业内最高效的MPPT算法


图4 不同组件IV曲线图

如上图4所示,由于双面组件失配较多,其IV曲线较单面组件更复杂、功率-电压曲线将产生多个极值峰,这就对逆变器的检测精度和最大功率跟踪(MPPT)提出了更高的要求。

对此,华为组串式逆变器拥有多路MPPT单元,能极大地避免组串失配导致的发电量损失;组串级的检测精度达到0.5%。

同时,华为采用业内最高效的MPP智能追踪算法,逆变器采用自适应MPPT追踪技术,光照相对稳定时能最大程度逼近组件的最大功率点;当多云天气光照剧烈变化时,能快速响应实时追踪到最大功率点,最佳适配双面组件。

此外,针对双面组件存在多个极值峰的特点,可智能识别当前是否处于全局最大功率点,并及时启动高速多峰扫描算法,确保逆变器始终处于组件全局最大功率点,有效提升双面组件的发电量。

更加安全可靠的防护设计

电流变大导致熔丝故障率增大

组件电流受辐照、温度等影响,大小不可控制,当熔丝处在小电流过载时,其熔断时间将变得很长,在这种“将断未断”的情况下,熔丝将处于一个非常高温的热平衡状态,或破坏线缆和熔丝盒的绝缘,最终引发着火事故。双面组件输出电流更大,更加容易出现小电流过载情况,导致高温熔断甚至引发火灾。


图5 熔丝高温引发故障

华为SUN2000-75KTL-C1双面组件专用逆变器每2串一路MPPT,采用无熔丝的安全防护方案,从设计上就保证不会出现过电流情况,安全保护组件并提高系统可靠性。 同时,避免了安全隐患、频繁的更换熔丝的运维工作和因熔丝故障引起的发电量损失。


单一规格的熔丝无法适应当前主流组件

现在市面上主流厂家的双面组件最大反向承受电流能力有15A和20A两种,如下图所示。这时直流汇流箱或内置熔丝的组串式逆变器无论选择哪种熔丝规格都无法适配另外一种规格的组件,即内置20A的熔丝,将无法保护15A的组件;内置15A熔丝又将因为工作电流大而频繁熔断。


两个主流双面厂家的最大保险丝额定电流

更精细化的设计, 业内唯一一款精准的双面组件电站设计工具

如前文所述,双面组件综合功率受项目地辐照资源、地面反射率等众多因素影响,导致双面组件在不同项目的实际输出功率差异很大。

这就要求设计人员不能一刀切地照搬组件串并联和逆变器的配置,而应该根据具体项目来精细设计。即便是相同地方,因场景不同方案也需要精细化设计。因此,双面组件系统方案较常规组件变化更多。如果要将所有影响因素都考虑到,双面组件系统的设计方案将多达10000种以上。此时按照经验和常规设计已经无法准确而快速地获取最优的系统设计,需要更专业的双面组件设计工具来辅助。

一般来讲,双面组件的发电量评估需要建立相应的物理模型。NREL、美国圣地亚国家实验室以及德国Fraunhofer ISE的研究人员在这方面做了大量研究,他们着重研究了Ray-tracing和veiw-factor两个模型,可以较为准确地描述双面组件来自背面的增益。这两个模型基于3D建模,尽管能够呈现更多细节,但算法比较复杂,运算起来也比较耗时,不符合工程应用的实际需求。

华为在这两个模型的基础上进行了简化和优化,推出了业内领先的基于2D物理模型(如图6所示)的设计利器——双面组件系统智能设计工具:它可以在计算速度和设计细节之间找到平衡点,准确而快速地计算双面组件系统的最佳配置。


图6 双面组件背面受到辐照的2D模型示意图

智能双面组件设计工具,融合全场景、自适应、自学习的智能控制算法,可以精准输出最优设计方案,较采用常规设计方法的方案发电量提升3%以上,是当前业内唯一一款精准的双面组件电站设计工具,已被大量实际数据验证。

最后,双面组件IV曲线的复杂性使组串故障智能诊断容易误判,反而引起运维的不便。最新的华为智能光伏IV诊断功能2.0,采用了全新的智能组串诊断算法,它基于大数据分析和AI算法,能够自主学习、自我进化,在内置数据库的基础上快速掌握各类组件的输入输出特性曲线并自动过滤引起误判的噪声,可全面支持双面组件,是双面组件电站运营维护的最佳选择。

综上,将智能光伏与当前主流逆变器解决方案进行对比分析,见下表。

表3:双面组件场景各解决方案对比表

03双面组件+最佳逆变器应用案例

输入电流更大、效率最高、业内唯一的双面智能设计工具、“双面组件+跟踪支架”智能融合控制算法、业内最高效的组件MPP智能追踪算法以及安全可靠的无熔丝设计,这五大智能法宝使得华为逆变器成为当之无愧的双面组件最佳搭档。


实际上,华为逆变器和双面组件解决方案已广泛应用于各种场景的双面组件电站,下表是部分精选案例:

表4:华为组串逆变器在双面组件电站的精选案例



1

共和双面组件电站

并网时间:2016年6月

容量:固定支架1MW,平单轴跟踪支架1.3MW

逆变器: HW SUN2000-50KTL-C1

组件: 360W HIT双面

应用场景: 草与沙

发电量增益(相比常规组件):10.5%


2

格尔木双面组件电站

并网时间:2017年8月起逐步并网

容量:平单轴跟踪支架60MW

逆变器:HW SUN2000-50KTL-C1

组件:345W组件,350W组件

应用场景:沙漠

发电量增益(相比常规组件): 13%


3

新泰农光互补项目

并网时间:2017年11月

容量:单轴跟踪支架100MW

逆变器:HW SUN2000-50KTL-C1

组件:310W

应用场景:农光

发电量增益(相比常规组件):22%

 

4

两淮漂浮电站

并网时间:2017年12月

容量:10 MW

逆变器:HW SUN2000-50KTL-C1

组件:285W

应用场景:水面白色浮筒

发电量增益(相比常规组件):15%

04总结

毫无疑问,双面组件已然按下新一轮技术更替键,而新技术的应用必然带来新匹配技术需求,如更高的逆变器输入电流、更细的MPPT颗粒度、更精准的MPPT算法,更智能的双面电站设计工具……谁是最适配的光伏逆变器和方案设计?通过以上分析,答案不言而喻。

索比光伏网 https://news.solarbe.com/201802/23/283711.html

责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

高效率且稳定的柔性钙钛矿-晶硅叠层太阳能电池来源:半导体学报 发布时间:2025-12-02 09:50:38

钙钛矿-晶硅叠层太阳能电池兼具高效率与低成本的优势,具有巨大的发展潜力。近期,《自然》杂志同时发表的两项柔性钙钛矿-晶硅叠层太阳能电池的研究,报道了该方向效率及稳定性的重大进展。图1.使用双缓冲层氧化锡的柔性钙钛矿/硅叠层太阳能电池,性能分析及各项参数对比。最终研制出的柔性钙钛矿-晶硅叠层电池效率高达33.6%,开路电压达到2.015V。

AEM:盐酸肼衍生物平衡锡基钙钛矿溶液中的前驱体配位、效率突破20%来源:知光谷 发布时间:2025-12-01 16:00:02

实验结果表明,引入BHC后,锡铅钙钛矿太阳能电池的稳定性和能量转换效率均得到提升。提升锡铅钙钛矿太阳能电池性能:实验证明BHC处理后的器件具有更高的结晶度、载流子寿命及能量转换效率,并显著改善器件稳定性。

陈雨&彭强EES:介电分子桥实现效率26.60%、高反向击穿电压且稳定的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-01 15:55:01

本文成都理工大学陈雨和四川大学彭强等人提出了一种介电分子桥策略,采用双氯膦调控钙钛矿结晶、抑制离子迁移、调节界面能带排列并钝化非辐射复合。最优器件实现了26.60%的光电转换效率,最大瞬态反向击穿电压达-6.6V。介电性能显著增强:F-CPP处理使钙钛矿介电常数提升约两倍,器件瞬态反向击穿电压高达-6.6V,反向稳定性大幅提升。高效率与高稳定性兼具:器件效率达26.60%,并在多种应力测试下表现出优异的长期稳定性。

我国电源规模最大、新能源占比最高的“沙戈荒”大基地项目开工来源:黄河水电 发布时间:2025-11-28 09:13:05

11月27日,青海海南清洁能源外送基地电源项目开工活动在青海西宁举行。黄河公司党委书记、董事长姚小彦出席活动并介绍青海海南清洁能源外送基地电源项目开工准备情况,公司领导周栋、沈德、霍兵分别参加相关活动。海南清洁能源外送基地电源项目,是全国电源规模最大、新能源占比最高的外送基地,是青海建设的第三条国家绿色能源通道,必将肩负起促进区域协调发展、服务国家“双碳”战略的时代使命。

EES:固态碘化物钙钛矿中金的电解沉积、剥离及离子传输动力学来源:知光谷 发布时间:2025-11-27 13:44:30

卤化物钙钛矿与金属电极之间显著的电化学反应会引入可移动的外源金属离子,这既可能导致器件不稳定,也可能赋予新功能。此外,反转偏压可剥离沉积的Au,展现出适用于双极阻变器件的可逆性,并为Au在钙钛矿基质中的电化学与离子传输本质提供了直接证据。

胡敏&鲁建峰AFM:全气相沉积FACs-钙钛矿太阳能模组实现>19%的功率转换效率来源:知光谷 发布时间:2025-11-26 11:55:56

本文武汉纺织大学胡敏和武汉理工大学鲁建峰等人提出了一种全气相沉积技术,用于制备活性面积为10.0cm、功率转换效率超过19%的PSMs。此外,这些全气相沉积模组在连续运行1000小时后仍保持85%的初始效率。研究亮点:首创全气相沉积钙钛矿模组工艺:实现了活性面积为10.0cm的钙钛矿太阳能模组,效率突破19%,展示了全气相沉积技术在大面积、高效率模组制备中的可行性与优势。

李忠安&李楠AM:f-PSCs 效率25.11%!极性醚链段调控自组装单分子层实现高效且机械稳健的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-26 11:48:28

柔性钙钛矿太阳能电池是下一代便携式、可穿戴及建筑一体化光伏器件的理想候选者。这一双重功能促使EtOPACz在柔性基底上组装形成致密、均匀的分子层,从而增强界面附着力、改善钙钛矿薄膜质量并促进空穴提取。因此,采用EtOPACzSAM的f-PSCs实现了25.11%的卓越能量转换效率,为目前报道的f-PSCs中最高值之一。这些结果表明,极性醚链段工程为同时优化高性能f-PSCs的界面接触、电荷传输和机械耐久性提供了一条强有力的策略。

AEM:混合学习实现自动化制备钙钛矿太阳能电池的重复性 >24% 效率来源:知光谷 发布时间:2025-11-25 14:33:54

实现高性能且具有良好重复性的钙钛矿太阳能电池仍然是一项重大挑战,因其本质上对制备过程波动和环境变化极为敏感。本研究为提高钙钛矿太阳能电池性能与重复性提供了实用策略,并为可扩展制造与材料加速开发奠定了基础。