信义超薄电子玻璃生产线成功点火

来源:世纪新能源网发布时间:2018-01-25 14:21:12
索比光伏网讯:东莞2013年4月26日 --领先优质浮法玻璃、汽车玻璃、节能建筑玻璃及太阳能光伏玻璃综合制造商信义玻璃,于2013 年4月25日上午10时38分宣布,其旗下位于芜湖市经济技术开发区的信义玻璃工业园建设的第三期工程项目 -- 超薄电子玻璃生产线顺利点火。 

超薄电子玻璃是目前在微电子、光电子和新能源等高新技术中应用最广、发展最快的特种玻璃之一,是平板显示器的基础核心材料之一,广泛应用于科技含量极高的智能手机(如iPhone)、电视与平板电脑触摸屏(如iPad)等领域。目前超薄电子玻璃行业前景非常广阔,在全球市场拥有庞大的潜在需求。

信义超薄电子玻璃项目是信义玻璃凭借在玻璃行业的成功经验,以及在现有技术和资源潜能整合的基础上,做出的进一步产业链延伸,这是信义玻璃在现有四大玻璃产业基础上发展的第五个产业。该项目的投产将打破国内超薄电子玻璃基板长期以来依靠进口的局面,信义玻璃也将进一步占领高端玻璃市场,提升公司的产业整合能力和产品竞争力,实现企业的战略转型和可持续发展。

关于信义玻璃

信义玻璃控股有限公司创建于1988年,2005年2月在香港联交所主板上市,是全球玻璃产业链的主要制造商之一。集团目前拥有东莞、深圳、江门、芜湖、天津、营口、德阳七大生产基地, 总占地面积500多万平方米。信义玻璃产品和解决方案涵盖优质浮法玻璃、光伏玻璃、汽车玻璃和工程玻璃等领域。

信义玻璃三大太阳能光伏玻璃生产基地,分别座落在东莞、芜湖和天津。信义光伏产业(安徽)控股有限公司为信义玻璃下属全资子公司,是全球最大的太阳能光伏玻璃生产商之一,拥有总计日熔化量2300吨的太阳能光伏玻璃生产线。主要产品涵盖超白压花玻璃(原片、钢化片)、AR光伏玻璃、TCO玻璃、超白浮法玻璃、超薄电子玻璃。



索比光伏网 https://news.solarbe.com/201801/25/196171.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
中国造!欧洲最大吨位光伏玻璃生产线成功点火!来源:凯盛科技集团 发布时间:2025-09-23 14:30:16

土耳其当地时间2025年9月19日上午11点,由凯盛集团下属企业国际工程总承包建设的日熔化量800吨超白压延光伏玻璃生产线成功点火。这是目前欧洲及西亚地区最大吨位的光伏玻璃生产线,也是土耳其产能最大、技术最先进的光伏玻璃生产线。该项目全面采用中国标准、中国技术和中国装备建造,建成投产后日均可生产13万平方米的高品质光伏玻璃。

信义光能:上半年太阳能玻璃卖不动,两条生产线已“放假”来源:口袋光伏 发布时间:2025-08-05 09:36:11

8月1日晚间,“光伏玻璃龙头”信义光能发布中期业绩“成绩单”。信义光能解释称,今年上半年,太阳能行业经营环境仍然复杂多变且充满挑战。盈利能力方面,信义光能毛利由2024上半年的31.40亿元减少36.4%至2025上半年的19.99亿元,整体毛利率由2024年上半年的26.9%减少至2025年上半年的18.3%。供应方面,信义光能披露,截至2025年6月末,公司在产的太阳能玻璃产能总熔量为每日2.32万吨,其中包括于2025年7月暂停运行的两条总日熔量为1800吨的生产线。

中能创泰国光伏展载誉归来!轻刚组件凭 “轻、薄、曲面适配” 圈粉全球客户来源:中能创光电科技 发布时间:2025-07-11 09:50:26

7 月 2—4 日的泰国曼谷国际光伏展(Solar Energy Thailand)圆满落幕。中能创携核心产品 ——轻刚组件精彩亮相,在高可靠高安全的前提下,轻刚组件凭借 “轻、薄、可适配曲面屋顶” 三大核心优势成为现场焦点,成功打响品牌在东南亚市场的知名度。

总投资5亿!湖北首个柔性钙钛矿光伏项目落户襄阳来源:柔性钙钛矿光伏前沿 发布时间:2025-07-07 16:55:03

据极目新闻报道,钙钛矿太阳电池薄膜贴在高楼大厦的玻璃上,使整栋大楼的照明用电便无需担忧;在手机外壳、电动汽车顶棚贴上这样的薄膜,手机断电或汽车无法启动的烦恼也将成为过去。近日,在襄阳市科协的“牵线搭桥”下,钙钛矿太阳电池薄膜技术科技成果转化项目成功落户襄阳,成为该市科技招商领域的又一重大突破。

华科/海南大学李雄 NC:26.46%!交联多功能双层聚合物缓冲层用于提高钙钛矿太阳能电池的效率和稳定性!来源:钙钛矿人 发布时间:2025-07-07 10:46:34

华中科技大学/海南大学李雄等人设计了一种由聚乙烯亚胺 (PEI) 和 2-((2-甲基-3-(2-(2-甲基丁酰基)氧基)乙氧基)-3-氧代丙基)硫代)-3-(甲硫基)琥珀酸 (PDMEA) 组成的双层多功能聚合物缓冲液,插入金属电极/传输层的界面。该缓冲液通过在金属层和 PDMEA 之间形成硫醚-金属-羧基螯合环来减轻金属原子扩散。此外,它通过基于 Lewis 酸碱反应的 PDMEA 羧基和 PEI 胺基之间的原位交联来促进高效的电子传输并抑制界面复合。因此,这种设计有效地减少了器件制造和作过程中不需要

NREL认证34.2%!长春应化所携手隆基发Science:普适性双自由基SAMs导电性/均匀性/稳定性均显著提升!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-27 14:42:47

钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥了关键作用。要实现钙钛矿光伏技术的进一步发展,SAMs需兼具增强的空穴传输性能、优异稳定性及大面积溶液加工性,但同步满足这些特性的分子设计仍存在重大挑战。

新一代太空光伏 | 钙钛矿光伏技术的太空应用前景来源:光大证券、亚化咨询 发布时间:2025-06-25 09:05:02

根据世界各国的太空计划,数十万颗卫星星座将被部署在不超过2000 km的高度,并相互连接形成网络以实现增强的宽带互联网、电力波束、科学探索和全球定位系统等,这些计划包括但不限于SpaceX的“星链”、亚马逊的“Kuiper”项目等。2024年3月1日,我国也成功地将卫星互联网高轨卫星01星发射升空。这些可持续发展的低轨道卫星项目都需要可靠的电源。此外,地球静止轨道、月球轨道、火星轨道以及月球或火星科研站(中国的国际月球科研站计划和美国的阿尔忒弥斯任务)等任务也需要强大的能源支持。

南京大学最新Nature Energy!钙钛矿技术的终极体现来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-24 13:48:05

为突破这一限制并进一步降低光伏发电的平准化成本,超越单结器件效率极限的多结架构方案成为迫切需求。其中全钙钛矿叠层太阳能电池通过能带隙可调的钙钛矿材料,可将两个或多个能带互补的子电池集成于单一器件(如框1所示),该技术通过减少光子热化损失,使认证能量转换效率(PCE)突破30%,显著优于单结硅基(27.4%)和钙钛矿(26.7%,最高为27%了)电池。更值得注意的是,全钙钛矿叠层微型组件效率已达24.8%,超越单结钙钛矿组件23.2%的纪录。

青岛大学刘亚辉 AM:20.4%! 3D 架构受体用于具有低电压损耗的高效有机太阳能电池!来源:钙钛矿人 发布时间:2025-06-24 09:10:45

青岛大学刘亚辉等人概述了一种分子设计方法,该方法需要通过掺入降冰片烯的 3D 结构单元,将 3D 结构基序集成到熔环受体分子的中心核心或末端基团中,特别是 LLZ1、LLZ2 和 LLZ3。目的是通过改变这些分子的分子结构来调节这些分子的聚集行为,从而提高受体材料的光致发光量子产率 (PLQY) 值并减少相应器件中的非辐射复合电压损失。我们的研究结果表明,降冰片烯单元的引入有效地抑制了过度的分子聚集,并显着提高了受体分子的 PLQY 值。进一步的研究表明,只有同时具有高 PLQY 和中等结晶度的受体分子

西湖大学王睿 NE:26.0%!钝化溶剂怎么选?钙钛矿表面钝化新策略!来源:钙钛矿人 发布时间:2025-06-18 11:13:41

西湖大学王睿等人提出了一种基于氟代异丙醇的钝化策略,仅通过一层低维钙钛矿即可实现表面缺陷的完全钝化,且不会干扰电荷传输。氟代异丙醇降低了钝化剂分子与钙钛矿的反应性,并允许使用高浓度的钝化剂,从而确保缺陷的完全钝化。随后,使用氟代异丙醇和异丙醇的混合溶剂进行冲洗,以去除多余的钝化剂分子。

溶剂工程和饱和钝化策略!西湖大学王睿&浙江大学薛晶晶用于改善钙钛矿太阳能电池缺陷钝化和再现性的氟化异丙醇来源:钙钛矿学习与交流 发布时间:2025-06-13 15:48:28

第一作者:西湖大学王思思博士通讯作者:西湖大学王睿&浙江大学薛晶晶表面缺陷钝化对于提高钙钛矿太阳能电池的效率和稳定性至关重要。然而,其可重复性和普遍适用性尚未得到充分探索,这限制了大规模生产。在此,西湖大学王睿&浙江大学薛晶晶我们介绍团队研究了一种基于氟化异丙醇的钝化策略,该策略可通过仅一层薄的低维钙钛矿实现表面缺陷的完全钝化,且不干扰电荷传输。氟化异丙醇降低了钝化剂分子与钙钛矿的反应活性,并允许使用高浓度钝化剂,确保缺陷完全钝化。随后用氟化异丙醇和异丙醇的混合溶剂冲洗,去除多余的钝化剂分子。我们证明,该