【突破】我国EVA胶膜领航太阳能电池封装技术革命

来源:发布时间:2016-11-29 09:22:59

迅猛发展的太阳能电池封装材料,已成为全球光伏领域大力研究的热点之一。近年来,我国太阳能电池的生产量以惊人的数量增长,相关封装材料的研究与开发也越来越重要。广州鹿山新材料股份有限公司推出的太阳能电池封装胶膜,在我国太阳能电池领域发挥着重要作用。

EVA封装胶膜在太阳能电池中的重要性

太阳能电池作为太阳能发电系统中最核心的部分,担负着将太阳能转化为电能的重要作用。太阳能电池若直接暴露于大气中,会导致光电转换效率衰减,其性能也会大大降低。因此,要想让电池组件的寿命得到保证,其封装材料的选择就显得尤为重要。

EVA胶膜作为太阳能电池封装的关键材料,主要起到保护电池以及将电池片与盖板玻璃紧密贴合的作用。一旦电池组件的胶膜、背板开始变黄、龟裂,电池也容易失效报废。因此,如何解决EVA胶膜老化变黄问题,延长组件使用寿命,成为了目前各大生产商亟需解决的问题之一。

近年来,国内一些知名的EVA胶膜生产商与科研院所合作进行了大量研究工作。比如广州鹿山新材料股份有限公司与中山大学、中科院广州能源所联合开发的太阳能电池封装用EVA胶膜,为解决EVA胶膜的抗老化、透光率等问题贡献了力量。

鹿山新材料攻破EVA胶膜变黄等问题

广州鹿山新材料股份有限公司专注于太阳能光伏组件领域内封装材料的研发、生产和销售,先后成功开发出晶硅光伏组件封装用EVA胶膜、薄膜光伏组件用EVA胶膜、抗PID封装用EVA胶膜和抗蜗牛纹封装用EVA胶膜等产品,其生产的EVA胶膜已获得TUV、UL、VDE、CQC等机构的认证,是中节能、正信、天合光能等国内大型光伏组件生产商的合格供应商,深受客户青睐。

鹿山新材料太阳能电池用EVA封装胶膜以进口树脂为原料,添加鹿山新材核心功能助剂,经过一系列化学与物理反应而成,具有良好的抗紫外光黄变性能。此外,该产品还具有高绝缘性能和高体积电阻率,为组件提供了优异的抗PID性能及抗蜗牛纹性能;高耐候性和低黄变的同时与组件其他辅材更好匹配,能适应不同的加工工艺,不容易产生凸点、气泡、移位、隐裂等问题,同时优异的透光性提高了组件的输出功率。

据统计,鹿山新材料在太阳能胶膜相关专利技术方面已申请52件,已授权43件,申请PCT国际专利1项,两项发明专利获得“国家发明专利优秀奖”,两项获得“广东省发明专利奖”。此外,鹿山新材料还十分重视自主创新,是国家重点火炬计划企业,获得“广东省科技进步一等奖”1项,“广州省科技进步二等奖”2项,“广东省科技进步三等奖”3项。

鹿山新材为新能源产业发展助力

广州鹿山新材料股份有限公司作为一家提供高分子功能新材料的高新技术企业,致力于EVA封装胶膜的研究已经超过10年,其生产的抗PID、抗蜗牛纹技术在业界备受赞誉。2015年,广州鹿山新材料股份有限公司全资子公司——江苏鹿山光电科技有限公司在常州顺利投产,鹿山新材的产业版图进一步得到扩张。

近年来,国内加大了清洁能源的开发力度,各地光伏产业发展迅猛,给EVA胶膜的市场发展提供了商机。面对当前的经济发展形势以及技术革命的挑战,鹿山新材将秉承“创享科技,粘接世界”的精神,研发更多符合市场需求的新产品,为新能源产业发展做出贡献。


索比光伏网 https://news.solarbe.com/201611/29/152497.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美国前9个月进口太阳能电池片17GW来源:光伏情报处 发布时间:2025-12-26 15:32:32

根据美国海关进口数据统计,2025 年1-9 月美国累计进口光伏电池片17.1GW, 较2024年同期的9.86GW增长73%。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

该企业光伏胶膜项目相关子公司全面停产!来源:索比光伏网 发布时间:2025-12-23 14:07:48

12月22日晚间,天洋新材(603330.SH)发布公告,宣布拟对光伏封装胶膜项目相关子公司全面停产。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

港科大周圆圆、港理工蔡嵩骅等人NC:揭秘钙钛矿电池性能的“隐形杀手”——晶内杂质纳米团簇来源:先进光伏 发布时间:2025-12-22 16:29:28

香港科技大学周圆圆、香港理工大学蔡嵩骅等研究团队,通过低剂量扫描透射电子显微镜首次在铯掺杂混合阳离子钙钛矿薄膜中,发现了一种新型亚稳态晶粒内杂质纳米簇。核心技术亮点首次发现晶粒内隐藏杂质:利用超低剂量扫描透射电镜,首次在原子尺度上直接观测并解析了隐藏在钙钛矿晶粒内部的亚稳态ABX型杂质纳米团簇的晶体结构。

西安交通大学马伟团队Angew:香豆素基挥发/非挥发性固体添加剂协同作用,助力有机太阳能电池效率突破20.3%!来源:先进光伏 发布时间:2025-12-22 16:27:12

针对这一挑战,湘潭大学、西安交通大学、西安科技大学等多个团队合作设计并合成了两种具有相似骨架的香豆素衍生物固体添加剂:挥发性C5与非挥性C6。结论展望本研究通过精准设计一对结构相似但挥发性迥异的香豆素衍生物添加剂,首次系统比较并揭示了挥发性与非挥发性固体添加剂在有机太阳能电池中的作用机制差异。

四川大学彭强团队NC:溶剂蒸汽扩散驱动多尺度预聚集策略,助力有机太阳能电池突破20.7%效率!来源:先进光伏 发布时间:2025-12-22 16:25:04

论文概览精确调控活性层形貌是提升有机太阳能电池效率的关键,但其复杂性使得实现可重复的最优结构极具挑战。针对此难题,四川大学彭强、徐晓鹏团队创新性地开发了一种溶剂蒸汽扩散策略。实现效率突破:将单结有机太阳能电池效率推升至20.7%以上,跻身世界最高效率行列。结论展望本研究成功开发并验证了一种基于溶剂蒸汽扩散的、用于精确调控非富勒烯受体多尺度预聚集的通用策略。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。