【科幻】乔布斯生前设计苹果总部大楼 形似飞船太阳能供电

来源:发布时间:2016-11-28 14:06:59

苹果飞船总部大楼,是美国苹果公司新总部大楼,乔布斯生前所设计。占地面积280万平方英尺(约合26万平方米),原计划于2015年建成,由于设计变更,预计将会在2016年年底完工,而它的一些卫星配套设施则需要等到2017年才能全部建造完毕。

不过从目前看来,苹果飞船总部的建设有些缓慢。目前国外媒体得到的消息来看,苹果飞船总部主体已经建设完成,然后周围配到设置还在建设中。

和上次的进度相比,现在苹果飞船总部夜景开始进行绿化工作,从图片中可以看到已经有少量的树木被栽种。另外,主体顶部的大量太阳能板也已经完成,看来整个建筑的主要能源来源都是以太阳能为主。据了解,2017年初就会有员工开始入住,不知道按照这个进度,是否可以照计划进行。

苹果大楼

苹果大楼

苹果大楼

索比光伏网 https://news.solarbe.com/201611/28/152608.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

上海交通大学戚亚冰团队Joule:双空穴传输层设计实现超柔性钙钛矿太阳能电池效率与稳定性协同提升来源:先进光伏 发布时间:2025-11-18 09:43:22

上海交通大学戚亚冰团队研究证实,在氧化铟锡透明聚酰亚胺基板上联合使用氧化镍与膦酸自组装单分子层作为空穴传输材料,可显著提升器件稳定性。研究意义攻克稳定性瓶颈:首次实现超柔性钙钛矿电池在空气中T80超过260小时的突破性稳定性,为柔性器件的实际应用扫除关键障碍。深度精度1.本研究成功制备了基于NiOX/2PACz双分子层空穴传输结构的超柔性钙钛矿太阳能电池。

日本宇宙航空研究开发机构 HTV-X1 货物转运飞船搭载理光钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-11-03 14:14:08

理光宣布,其钙钛矿太阳能电池已安装在日本宇宙航空研究开发机构于10月26日发射的新型无人载货转运航天器1HTV-X1上的HTV-X上,位于HTV-X上的太空太阳能电池演示系统中。自2017年以来,理光一直参与与JAXA太空探索创新中心合作研究,开发适用于太空环境的高耐久性钙钛矿太阳能电池。理光将以此次太空演示的成果为基础,继续提高钙钛矿太阳能电池的性能和高耐久性,加速早期商业化的发展。

西北工业大学Angew:分子设计驱动的界面工程实现钙钛矿太阳能电池中缺陷钝化与空穴提取的同步提升来源:知光谷 发布时间:2025-10-24 09:20:54

界面工程已成为解决钙钛矿与空穴传输层之间界面缺陷和能级失配问题的有效策略。该空穴界面分子设计策略为实现钙钛矿太阳能电池的高效率和高运行稳定性提供了可行路径。

苹果将为欧洲电网新增650MW可再生能源装机来源:新能情报局 发布时间:2025-10-14 14:30:14

2025年10月14日,科技巨头苹果公司宣布加码欧洲清洁能源领域,目前正于希腊、意大利、拉脱维亚、波兰及罗马尼亚五国推进大型太阳能与风能农场建设。与此同时,西班牙一座全新太阳能阵列已正式投入运营,上述项目共同构成苹果在欧洲的可再生能源新布局。据苹果方面介绍,这些项目未来数年将为欧洲电网新增650兆瓦可再生能源装机容量,到2030年,可为苹果用户生成超100万兆瓦时的清洁电力。

Nat Commun:面向工业硅电池的稳定高效钙钛矿/硅叠层太阳能电池界面设计策略来源:知光谷 发布时间:2025-10-09 15:44:03

减少钙钛矿/电子传输层界面的非辐射复合是实现高性能稳定钙钛矿/硅叠层太阳能电池的关键挑战。本研究分析了能量损失,并设计了双层钝化策略以提升叠层电池的性能与耐久性。实验结果表明,该双层钝化策略可精确调控钙钛矿能级排列、降低缺陷密度并抑制界面非辐射复合。采用AlO/PDAI处理的单片式钙钛矿/硅叠层太阳能电池,在使用基于QCELLSQ.ANTUM技术制备的工业硅底电池上,实现了31.6%的光电转换效率。

南开大学陈永胜团队EES:中心核心不对称受体设计通过抑制非辐射能量损失和优化纳米形貌,使二元有机太阳能电池的效率提高20%以上来源:先进光伏 发布时间:2025-08-18 11:06:28

目前仅少数二元体系突破20%效率,且依赖复杂形貌调控。南开大学陈永胜团队设计核不对称受体Ph-2F,实现二元器件效率20.33%,创不对称受体世界纪录。该设计通过协同调控形貌与能损,为产业化提供高稳定性新路径。EQE光谱响应扩展至894nm,积分电流误差3%。动力学曲线拟合显示Ph-2F体系激子解离时间(τ)仅0.121ps,扩散时间(τ)缩短至5.161ps,空穴转移效率达98.71%,为高效率提供动力学基础。

南开大学万相见EES:中心核不对称受体设计通过抑制非辐射能量损失和优化纳米形貌实现二元有机太阳能电池效率超过20%来源:知光谷 发布时间:2025-08-13 08:40:53

尽管有机太阳能电池(OSCs)的效率已超过20%,但大多数高效器件依赖于三元活性层以平衡开路电压(VOC)、短路电流密度(JSC)和填充因子(FF)。相比之下,二元器件具有形貌调控简单、工艺复杂度低和重复性好等优势,更有利于未来应用。本研究南开大学万相见等人通过结合中心核不对称取代与卤素工程,设计并合成了两种不对称受体Ph-2F和Ph-2Cl。这种不对称设计显著提升了受体的发光性能(Ph-2F的PLQY达10.36%),有效抑制了非辐射能量损失(ΔE3低至0.193 eV),同时优化了与聚合物给体PM6的纳米形貌。最终,基于PM6:Ph-2F的二元器件实现了20.33%的冠军效率(认证效率19.70%),是目前不对称受体二元OSCs的最高值。此外,13.5 cm²的大面积模块效率达到17.16%,创下二元OSCs模块的效率纪录。

Advanced Materials:突破性反向设计—为钙钛矿太阳能电池量身定制的空穴传输材料来源:先进光伏 发布时间:2025-08-11 14:50:56

能级精确调控:三氟甲基强吸电子效应诱导界面电荷位移,使NiO功函数负移,与钙钛矿能级偏移降至0.01eV。结论展望本研究通过三齿共价锚定分子3F-PTES,实现了NiO界面缺陷钝化与能级对齐的协同优化,推动倒置钙钛矿太阳能电池效率与稳定性同步提升。未来,通过进一步优化分子设计与规模化制备工艺,该策略有望为高效稳定钙钛矿光伏器件的商业化提供新路径。

研究人员提出仿生设计策略,以提高钙钛矿太阳能电池的稳定性和可持续性来源:钙钛矿材料和器件 发布时间:2025-08-07 14:22:48

香港科技大学(科大)、耶鲁大学、劳伦斯伯克利国家实验室和洛桑联邦理工学院的工程学院(SENG)的研究团队推出了全面的仿生多尺度设计策略,以应对钙钛矿太阳能电池商业化的关键挑战:长期运行稳定性。这些战略从自然系统中汲取灵感,旨在提高太阳能技术的效率、弹性和适应性。

突破UV衰减瓶颈!东方日升异质结技术再登国际顶刊,引领光伏可靠性革命来源:东方日升新能源 发布时间:2025-07-10 15:52:16

硅异质结太阳能电池对紫外线(UV)敏感。二次离子质谱(SIMS)分析表明,365nm 紫外线会解离 Si-H 键,导致氢原子从 a-Si:H/c-Si 界面迁移并形成亚稳态缺陷。东方日升全球光伏研究院联合东南大学,针对n型异质结电池和组件的紫外稳定性进行了深度机理性的研究,开发了低紫外损伤连续PECVD 工艺,通过优化i1钝化层氢含量达33%( a-Si0x:H)i2钝化层氢含量达25%(a-Si:H),使载流子寿命提升至3.6ms,紫外诱导衰减(UVID)从1.59%降至 0.71%。