南开大学陈永胜团队EES:中心核心不对称受体设计通过抑制非辐射能量损失和优化纳米形貌,使二元有机太阳能电池的效率提高20%以上

来源:先进光伏发布时间:2025-08-18 11:06:28

论文概览

有机太阳能电池(OSCs)产业化面临核心矛盾:三元器件效率高但工艺复杂,二元器件工艺简单却效率受限。目前仅少数二元体系突破20%效率,且依赖复杂形貌调控。南开大学陈永胜团队设计核不对称受体Ph-2F(苯环氟取代),实现二元器件效率20.33%(认证19.70%),创不对称受体世界纪录。分子静电势调控(4.98 kcal/mol)使非辐射损失降至0.193 eV,激子解离加速至0.121 ps;同步实现13.5 cm²模块效率17.16%(全球最高),寿命超403小时。该设计通过协同调控形貌与能损,为产业化提供高稳定性新路径。该研究以“Central Core Asymmetric Acceptor Design Enables Over 20% Efficiency in Binary Organic Solar Cells by Suppressing Non-Radiative Energy Loss and Optimizing Nanomorphology”为题发表在顶级期刊Energy & Environmental Science上。

技术亮点

1.核不对称设计:苯环侧位氟取代打破对称性,静电势差4.98 kcal/mol增强给受体作用,PLQY达10.36%(超Y6的63%),非辐射损失压至0.193 eV。

2.相分离形貌自优化:相容性优化(Flory参数χ=0.20K)形成10.99 nm互穿网络,空穴/电子迁移率比1.07,电荷复合降低33%。

3.空穴转移动力学加速:飞秒瞬态吸收证实激子解离时间0.121 ps(比氯取代快2.4倍),空穴转移效率98.71%,实现免三元掺杂的高效电荷提取。

研究意义

✅突破二元效率极限:创20.33%世界纪录(认证19.70%),首个不对称受体突破20%壁垒,无需三元组分简化工艺30%。

✅大面积模块新标准:13.5 cm²组件效率达17.16%全球最高,破解面积扩大导致的效率衰减难题。

✅开辟低能损产业化路径:非辐射损失压至0.193 eV(达理论极限),器件寿命超403小时,为量产提供高稳定性基础。

深度精读

图1分子设计与基础特性

图1a展示核心不对称受体Ph-2F/Ph-2Cl的分子结构,其创新性在于苯环侧位氟/氯取代(红色箭头)。静电势分布揭示Ph-2F电势差达4.98 kcal/mol(Ph-2Cl为5.11),卤素取代区(红/蓝色渐变)主导强给受体相互作用。紫外光谱显示固态薄膜中Ph-2F吸收峰显著红移76 nm至808 nm(溶液732 nm),证实氟原子增强分子间π-π堆叠强度。能级排列表明PM6的HOMO(-5.41 eV)与Ph-2F的LUMO(-3.79 eV)形成0.62 eV阶梯差,为高效激子解离提供驱动力。

图2性能与机制验证

J-V曲线显示PM6:Ph-2F器件实现三参数协同优化:开路电压0.906 V、短路电流27.58 mA/cm²、填充因子81.26%,效率达20.33%(认证19.70%),创不对称受体二元器件纪录。EQE光谱响应扩展至894 nm,积分电流误差<3%。图2e证实13.5 cm²模块效率17.16%。空穴/电子迁移率比值1.07(Ph-2Cl为1.16),电致发光量子效率5.36×10⁻⁴支撑非辐射损失降至0.193 eV。

图3激子动力学机制

飞秒瞬态吸收光谱揭示核不对称设计对空穴转移的调控机制:当800 nm激光选择性激发受体时,Ph-2F纯膜在820 nm处呈现显著负向基态漂白(GSB)信号(强度超Ph-2Cl 30%);共混体系中,630 nm处PM6给体GSB信号在0.5 ps内快速上升(紫色箭头),同时受体820 nm信号衰减,证实空穴由受体向给体转移。动力学曲线拟合显示Ph-2F体系激子解离时间(τ₁)仅0.121 ps(Ph-2Cl需0.288 ps),扩散时间(τ₂)缩短至5.161 ps(11.781 ps),空穴转移效率达98.71%,为高效率提供动力学基础。

图4分子堆叠有序性

GIWAXS二维衍射图揭示核不对称设计对结晶行为的调控:纯Ph-2F薄膜(左)在面外方向(OOP)呈现显著(010)衍射环(q=1.78 Å⁻¹),对应π-π堆叠距离3.53 Å(比Ph-2Cl的3.61 Å更紧密),相干长度23.26 Å证实高度有序;共混体系中,PM6:Ph-2F维持优势面取向,其OOP方向(010)峰相干长度增至31.23 Å(Ph-2Cl仅29.13 Å),同时π-π堆叠无序因子g值降至13.4%,为电荷迁移率提升提供结构基础。

图5形貌与相分离解析

原子力显微镜(AFM)显示PM6:Ph-2F共混膜表面粗糙度0.91 nm,相图呈现清晰双连续纤维网络;AFM-IR技术(氰基特征峰2216 cm⁻¹定位受体)证实其纤维直径仅10.99 nm,显著优于Ph-2Cl的18.77 nm粗大聚集体。结合表面能计算,Ph-2F与PM6相容性更佳,形成纳米级互穿相分离结构,促进给受体界面最大化,为高效电荷传输提供形貌基础。

文献来源

Jian Liu, Zhaochen Suo, Yongsheng Chen*, et al. Central Core Asymmetric Acceptor Design Enables Over 20% Efficiency in Binary Organic Solar Cells by Suppressing Non-Radiative Energy Loss and Optimizing Nanomorphology. Energy & Environmental Science, 2025.

https://doi.org/10.1039/D5EE03005F.

仅用于学术分享,如有侵权,请联系删除。

索比光伏网 https://news.solarbe.com/202508/18/50006300.html

责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。