争夺“效率世界第一”(上)松下凭异质结型夺冠

来源:发布时间:2016-08-31 15:15:59

松下凭借自主开发的异质结型构造夺回了晶体硅太阳能电池转换效率世界第一的宝座。通过与非晶硅结合以及电极材料位置的改良,提高了效率。

日本的太阳能电池市场遭遇了不利状况。

因可再生能源固定价格收购制度(FIT)的修正及收购价格的降低,日本市场在不断缩小。光伏发电协会整理的2015年的日本出货量为比上年减少15%的786万kW,是导入FIT后的首次减少。2016年度基于FIT的光伏发电收购价格比上年要低,估计日本市场将进一步缩小。

在全球市场上,由于新兴市场国家的厂商增产,供给过剩的情况没有消除。虽然全球的需求在增长,但价格竞争激烈,能获得稳定收益的企业有限。

电池转换效率

松下太阳能电池单位面积的发电量大,因此多配备于住宅屋顶

即便如此,仍然有很多企业致力于研究开发,原因是该领域现在仍有技术开发空间。如果太阳光转换成能源的效率高,太阳能电池单位面积的发电量就会增加。就是说,提高转换效率有助于降低成本。

就算是为了提高商品的吸引力,各公司也纷纷瞄准了世界第一的转换效率。

松下3月2日宣布,其开发的晶体硅类太阳能电池模块的转换效率达到了世界最高水平的23.8%,超过了此前的世界最高效率——美国SunPower的22.8%。

  15年效率提高5个百分点

将太阳能电池单元制成模块后,因有无法受光的部分,会产生损失。松下利用光的反射等尽可能多地吸收太阳光,从而改善了效率。

该公司2014年还使晶体硅太阳能电池单元的转换效率达到了25.6%,刷新了自家保持的世界最高记录。虽然是实验室水平,但是以实际尺寸实现的。此次发布的成果,是电池单元和模块双双达到了世界最高效率。


松下此前也多次刷新转换效率的世界最高记录。2000年突破了20%,约15年的时间效率提高了大约5个百分点。太阳能BU技术开发部部长冈本真吾自豪地说,“不要把我们的产品和普通的太阳能电池混为一谈”。

这是因为,该公司不但开发了高转换效率构造的太阳能电池,还反复地做了切实的改良。该技术起源于松下收购的三洋电机,是三洋电机开发了HIT(异质结型)太阳能电池。

以往的太阳能电池利用晶体硅构成,而三洋电机在上面层叠了晶体结构不规则的非晶硅。这就是异质结型太阳能电池。

以前的硅类太阳能电池存在的课题是,电子会滞留在晶体硅与电极的接点上,形成正负电子可重新结合后消失的缺陷区域。三洋电机通过用非晶硅连接晶体硅减少了缺陷区域,降低了电子的损失。

电池单元

收购了三洋电机的松下通过反复改良非晶硅的形成等,提高了转换效率。并于2014年采用背接触型结构,使转换效率突破了25%的壁垒。

背接触型是指电极集中在背面的太阳能电池。通常电极是在正面,这样会遮光,造成转换效率降低。使电极集中在背面,能吸收更多的光。此前因将正面电极变细而产生的电流电阻,也因电极集中到背面而降低了。

美国SunPower以该技术为武器制作了高效率太阳能电池。后来背接触的主要专利到期,松下也采用该技术,在准备进行商品化。

索比光伏网 https://news.solarbe.com/201608/31/159675.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
向27%量产电池效率迈进——迈为股份亮相国际异质结大会暨钙钛矿-硅叠层大会,分享最新异质结提效技术来源:迈为股份 发布时间:2025-12-05 16:11:25

2025年12月1-3日,第八届国际异质结大会和首届国际钙钛矿-硅叠层大会在韩国大田隆重举行。面向27%效率的下一代异质结技术布局在上述已验证且行之有效的提效技术基础上,彭振维进一步介绍了迈为对下一代异质结电池的探索与发现。异质结成本与可持续性优势凸显除了效率领先,异质结技术的低成本潜力正加速释放。随着银浆价格持续上涨,异质结电池低银耗的优势日益突出,成本竞争力进一步增强。

日本松下在办公窗户上测试玻璃基钙钛矿太阳能电池板来源:pv-magazine 发布时间:2025-12-04 14:55:48

在研究中,松下玻璃型钙钛矿太阳能光伏被用于四个带有防水木质推拉框的YKK内窗,尺寸为723毫米×1080毫米。松下公司开发钙钛矿太阳能技术已超过十年。

山大团队AM:构建聚合物桥接异质结,实现效率28.26%的全钙钛矿叠层电池来源:知光谷 发布时间:2025-11-18 09:22:19

宽带隙钙钛矿太阳能电池一直受限于长期稳定性和开路电压损耗,这制约了全钙钛矿叠层电池的性能。这项工作凸显了3D/2D异质结设计的巨大潜力,为宽带隙钙钛矿电池及全钙钛矿叠层电池的发展提供了宝贵见解。卓越效率与稳定性:基于此策略,成功制备出效率高达28.26%的全钙钛矿叠层电池,并展现出2.151V的高开路电压和优异的热稳定性,为高性能叠层器件的开发树立了新标杆。

AFM综述:范德华异质结中的界面工程:通过结构与功能修饰提升光电探测器效率来源:知光谷 发布时间:2025-11-17 09:38:32

二维材料及其范德华异质结构在光电器件中展现出巨大潜力,尤其是在光电探测器方面。界面工程已成为材料科学中的核心策略,通过调控层间相互作用、能带排列和电荷转移动力学,显著提升光电探测器的性能。最后,文章展望了未来研究方向,包括利用机器学习优化光电探测技术。新兴应用前景广阔,如偏振敏感探测、多光谱成像等,结合机器学习辅助设计,推动光电探测器向多功能、智能化方向发展。

剑桥大学Science:能带偏移随心调钙钛矿异质结实现II型/I型自由切换来源:知光谷 发布时间:2025-11-17 09:35:21

卤化物钙钛矿具有优异的光电性能,但在异质结中缺乏精确的厚度和能带偏移控制,而这对于多层量子阱等模块化结构至关重要。英国剑桥大学RichardH.Friend和SamuelD.Stranks等人展示了气相逐层外延生长方法,以在PEAPbBr单晶上沉积CsPbBr为例。精确的量子限域控制和大的能带偏移可调性,开启了钙钛矿异质结作为可扩展、基于超晶格的光电应用平台的大门。实现长寿命电荷分离与优异光电性能:在II型异质结中观察到超过10微秒的延迟复合,表明有效的界面电荷分离。

32.27%!金辰股份首度公开钙钛矿/异质结叠层电池效率进展来源:钙钛矿光链 发布时间:2025-11-05 08:38:14

近日,金辰股份可再生能源实验室传来重磅进展:不仅在晶体硅底电池研发上积累了硬核技术,还已与海内外多家研究机构签订供货协议,2024 年以来累计供货超 1 万片,以优质产品与专业服务赢得广泛认可。

突破27%效率!天合光能硅异质结电池技术揭秘,逼近理论极限来源:材料科学通 发布时间:2025-10-30 14:00:28

近年来,硅异质结技术因其卓越的钝化效果,成为冲击效率极限的明星。结果显示,天合光能的SHJ电池在VOC×FF这一核心乘积项上具有明显优势,且其宣称的高效率有着极高的电池-组件转换比率作为坚实支撑,结论更具说服力。文章最后展望,基于目前近乎完美的钝化水平和低电阻损失,硅异质结前背接触技术是逼近29.4%理论极限的最有希望的载体。

天合光能Nat Commun:效率达27%的硅异质结电池,组件转换率高达98.6%,推动向29.4%理论极限迈进来源:知光谷 发布时间:2025-10-27 14:21:36

对于硅单结太阳能电池而言,本工作展示了向俄歇复合主导机制迈出的重要进展,这一因素对于逼近29.4%效率极限而言,比降低正面光学遮光更为关键。向理论效率极限迈进:通过优化钝化与接触结构,使器件进入俄歇复合主导的工作区间,为逼近硅单结太阳能电池29.4%的理论效率极限提供了可行的技术路径与量产方案。

刘生忠&冯江山AM:哌啶衍生物的通用型3D/2D表面异质结用于高效反式钙钛矿太阳能电池来源:知光谷 发布时间:2025-10-24 09:18:22

3D/2D钙钛矿异质结构已成为同时提升钙钛矿太阳能电池效率和稳定性的有效策略。本研究中国科学院大连化学物理研究所刘生忠和陕西师范大学冯江山等人引入了一种氟化哌啶衍生物——4-三氟甲基哌啶,作为3D钙钛矿的精确表面重构剂。高效电子提取与传输:3D/2D异质结显著提升电子提取效率,降低界面缺陷密度,抑制非辐射复合,使反式PSC效率突破26%,VOC高达1.194V。

华晟凭全异质结产业链正式加入SSI倡议来源:索比光伏网 发布时间:2025-09-29 09:46:33

华晟新能源自2020年成立以来,始终致力于异质结技术的产业化与商业化,以“让光伏真正成为第一能源”为愿景,持续探索技术前沿。作为SSI新成员,华晟将以ESG战略为核心,坚持人与自然和谐共生的理念,积极参与全球能源绿色转型,为太阳能行业的可持续发展注入异质结技术的创新力量。

Science:表面硫化构建异质结,助力倒置钙钛矿太阳电池效率与稳定性双突破!来源:先进光伏 发布时间:2025-09-15 09:03:36

结论展望本研究通过表面硫化构建Pb-S键异质结,首次实现倒置钙钛矿电池效率突破24%,同时解决长期困扰的界面稳定性与离子迁移问题。该创新不仅验证了“强化学键合-能级调控-晶格匹配”的协同机制,还为钙钛矿界面工程提供新思路——通过构建稳定无机-有机杂化界面,平衡效率与稳定性。这项研究为高效、稳定又环保的钙钛矿电池商业化扫清核心障碍,未来清洁能源普及再添强动力。