【图解】生物太阳能电池:苔藓居然也能发电

来源:发布时间:2016-03-31 08:45:59

尽管光能转电能的概念十分有价值,但目前的光伏系统仍存在许多问题。举例来说,其生产、加工过程产生的有毒副产品就导致了许多长期问题。此外,其在光照不足区域(北部地区)的运作效率十分低下。但如果光伏系统以生物为介质,那么上述问题都将得到一定程度的解决。

生物光伏(BPV)是一项旨在将自然的光合作用应用于太阳能发电的新兴技术。相比于硅制成的太阳能电池,使用生物材料制成的太阳能电池来捕获光能更具优势,其生产成本更低,且具有自我修复、自我复制和可生物降解的功能,更加可持续。这种电池的制造过程是对环境无害的,此外,它还适用于光照直射不足的地方。

日前,西班牙加泰罗尼亚高级建筑学院的学生Elena Mitrofanova在其论文中提出一项以苔藓为介质的光伏发电系统,直观看来,是一组种植苔藓的立面中空模块化墙砖。

  立面的苔藓光伏发电系统

在光合作用过程中,植物利用光能把周边环境中的二氧化碳和水转化为有机化合物。“(苔藓)释放的有机化合物进入含有共生菌的土壤,细菌为生存对有机化合物进行分解,这一过程就产生了含有电子的副产品。”Mitrofanova说,“只需为这些微生物产生的电子提供一个电极,这些电子就能被收集且发电。”


其他种类的植物和藻类同样适用于该发电系统,但唯独苔藓成为该系统的首选是由于其独特的属性。众所周知,苔藓是城市区域较为常见的一种植物,道路、墙壁、屋顶和树木的缝隙都能发现它的身影。因此,该发电系统在城市区域内推行的阻力较低。此外,苔藓优于其他高等植物的原因还包括重量负荷轻、吸水率高、无肥料需求、抗旱能力强和低维护成本。

一个苔藓发电单位就是一个完整的生物电运行系统,由阳极生物材料(苔藓)、阳极、阴极、阴极催化剂、允许正电荷(主要是质子)从阳极生物材料向阴极转移的“盐桥”组成。阳极即水凝胶和导电碳纤维组成的无土基质,水凝胶是一种可吸收其自身重量400倍的水分的聚合物,能与苔藓湿度互补。发电系统中物质均不会破坏苔藓的代谢运动。

  苔藓光伏发电系统的制造材料

除此之外,一个苔藓发电单位面积为100×100毫米,一单位的发电量为0.35伏特。混合炭纤维和水凝胶的阳极(切得既小又薄)在的立方体中,有一层碳织物以及被苔藓掩盖的混合物。该发电系统还配有一个监测装置,内设传感器,每5秒自动检测内部环境的勒克斯(光照单位)、湿度、温度和电压等指数,并即时保存数据。

将苔藓电池设计成具有伸缩性的系统,可应用于城市地区是Mitrofanova的目标之一。苔藓光伏电池的组织形式有并联和串联电路两种,可安装在建筑物的外墙。

模块化墙砖除了扮演容器的角色,其本身还为苔藓形成了一个保护层,使其免受阳光的直接照射,形成利于其生长的湿润微气候。仅有墙砖内部的底部为防水而上釉,其他部分都是没有涂层的多孔粘土。粘土的吸水性很好,该系统可被动地接收雨水,而其中的水凝胶则可长期保存水分。

  模块化墙砖

目前为止,该苔藓发电系统的发电量还十分有限,16个模组仅能产生3瓦特的电力。虽然发电量十分有限,但仍能为一些小型电器供能,例如电脑、手机和LED照明系统等等。Mitrofanova坚信,未来科技具有实现较低能量需求和更高效率的可能,苔藓光伏电池终有一天将成为人类的可行选择。

为笔记本电脑、手机等物供电所需的估计苔藓发电面积

索比光伏网 https://news.solarbe.com/201603/31/171679.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
江山控股2025年1至11月总发电量279,780兆瓦时来源:江山控股 发布时间:2025-12-09 19:35:20

从事投资及营运太阳能发电站项目的江山控股有限公司(“江山控股”或“公司”,连同其附属公司统称“集团”,港交所股份代码:295)欣然公布,根据集团现有的初步营运统计数据,集团拥有的太阳能发电站于2025年1月至11月的总发电量约279,780兆瓦时(“兆瓦时”),去年同期同站发电量约为296,407兆瓦时。本集团于2025年11月30日的总装机量为290兆瓦。

金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

中节能&宁夏海原县:签署500MW光伏项目开发协议来源:智汇光伏 发布时间:2025-12-09 09:29:18

12月3日,中节能太阳能股份有限公司与宁夏自治区中卫市海原县人民政府签订光伏项目投资框架协议,双方就合作推进建设一期500兆瓦光伏发电项目达成一致意向并展开深入交流。