深入浅出理解光伏直流系统(一)

来源:索比太阳能光伏网发布时间:2015-10-20 09:07:26

高览电气(上海)有限公司 杜晓牧


引言:

今年以来,集中式与组串式两大流派针对各自的技术是否安全可靠展开了激烈的讨论。组串式发电技术的拥趸坚定地认为,光伏熔断器是集中式发电并网发电的风险来源,甚至宣称国内集中式光伏电站的火灾数量平均下来每个月都有发生。

2013年9月,外国光伏的专业媒体曾在文中提到德国的一项研究显示在130万业已安装的系统中大约发生了75起事故,而美国的该项研究显示,整个国家仅有7起事故发生。
众所周知,欧美国家小型家用屋顶项目采用的微型逆变器或组串式逆变器技术,大型分布式项目采用较多的是集中式逆变器。从统计数据来看,无论集中式还是组串式的解决方案其安全性和可靠性都非常高。但由于集中式光伏项目的在项目总数量上比例更高,所以从统计学角度来理解,集中式的安全可靠性与组串式相比或许更高。

而反观国内的情况,长期以来国内光伏行业重设备而轻系统研究的情况十分严重。此篇文章将从国内目前广泛采用的集中式并网发电系统的短路分析入手,对比欧美国家的系统设计,帮业主和EPC客户及设计院重新审视自己的光伏电站的设计和低压电器的选用。

 

第一部分 光伏组件篇


要想对光伏系统的短路故障进行分析,首先需要对光伏电池组件的性能形成正确地认识。对于光伏组件和组串,我们需要强调的是:


1.光伏电池串串并联规则: 光伏电池串联增加可用电压,电池并联增加可用电流。


图1 光伏电池串联增加可用电压,并联增加可用电流


2.一个重要的指标光伏电池的短路电流Isc: 这一指标通常为测试条件是照度为1000W/m2 ,温度为25℃条件下测量的短路故障电流,若照度和温度有变化,其数值也会有较大变化,但是当照度超过1000W/ m2 时,其大小不会变化太大,同时25摄氏度这一条件的变化也对其短路电流的增加有影响。

图2 以天合光能的用于大型地面电站的72片多晶组件(310W)为例[1]


3.光伏直流侧系统电路是电流限制型电路:基于目前的市场上光伏组件的厂家样本,我们可以得知串联在一起的某一路光伏电池组串,当发生短路故障时其短路电流的大小与单个电池发生短路的电流(Isc)大小一致,一般不超过10A。


根据上面的介绍,我们可以得知光伏直流系统电路是一个短路电流有限制的电路,即此线路为电流限制型电路。

 


第二部分 短路故障类型与反向电流


关于直流侧系统的故障类型,在北美地区采用的是接地系统(Grounded PV system),光伏系统研究人员将直流系统的短路故障分为接地故障(Ground fault)和线线故障(Line-Line fault)两种[2]。

图3 正常工作状态下的光伏系统[3]

图4 发生接地故障的光伏系统[2]

图5 发生线线故障的光伏系统[3]


在欧洲地区和我国广泛采用的是不接地系统(Ungrounded PV system或 floating PV system),对于不接地系统北美地区也有采用。有些德国的光伏研究人员把直流系统的短路故障分为组件短路故障(Module short-circuit)和对地故障(Double Earth Fault)[2]。根据美国690.35(B)的规定不接地系统的正负极都要采用过电流保护装置(OCP, Over-current Protection Device)进行线路保护。这是因为不接地系统的正负极的电缆均为带有电流的导体,有可能从负极产生短路故障(Double Earth Fault)[2],所以正负极均要采用过电流保护装置。

图6 不接地系统可能发生的短路故障[4]

图7 不接地系统线路图[5]

但是不论哪种光伏直流系统(接地或不接地),无论哪种短路故障类型,系统都会表现为由于短路故障点的电阻下降,其余并联在一起的其他线路达到短路状态同时反向流向此短路点,我们称此电流为反向短路电流(Iback)。

 



专题. 为什么集中式逆变器在组网时必须要加熔断器? [6]

图8组串数量为3时的短路电流计算[6]


为了了解集中式逆变器在组网时必须要加装熔断器这个问题我们引用一个模型来讨论,此模型为3串电池组件(three strings)组成的一个系统并且并联在一起,每个组件的短路电流为Isc=8.19A。


美国的光伏系统研究人员认为[6],当组串数为3串时,发生短路后,A线路的电流达到10.2A(1.25*8.19=10.2A),B线路的反向电流大小为其余2串线路的短路状态的电流2*10.2A=20.4A与逆变器的反向电流D线路(大小为0A)汇流后的电流。此反向电流20.4A对15A的熔断器形成了过载(20.4÷15=1.36倍),这种情况下就进入了gPV级熔断器的保护范围(gPV级熔断器是1.35In(UL标准)或1.45In(IEC标准)),所以对于集中式的光伏发电系统组网的时候无论是汇流箱还是逆变器直流侧输入线路的路数大于3路时,安装gPV级熔断器会更加有效地保护系统线路。换句话说当并联路数超过3路时,就必须加装gPV级熔断器进行线路保护。并且我们可以总结得到一个分析光伏系统直流侧的反向电流计算公式:

(注:n为并联的路数,Isc为光伏电池的短路电流)

 

 

 

 

 

 

 


第三部分 系统短路故障分析篇


我们将利用前两部分的两个结论:


1.串联在一起的某一路光伏电池组串,当发生短路故障时其短路电流的大小与单个电池发生短路的电流(Isc)大小一致,一般不超过10A。
2.光伏系统直流侧的反向电流计算公式:IFAULT = I back =(n – 1) x 1.25 x ISC
对目前国内较为常见的直流系统组网方式进行分析,其中组件采用天合光能的260W多晶硅组件。

图9 天合光能260W多晶硅组件I-V曲线[7]


整个光伏直流测系统采用260W的电池组件,以22片为一路串联在一起组成一路组串。
每16路组串在正负极串联了15A的10*38mm的gPV级熔断器后,并联在一起接入一个16路汇流箱,16路汇流箱(共计96路)的出线侧采用200A光伏专用直流断路器。 6个汇流箱出线端利用70平铜电缆在500kW逆变器直流侧内部再串联一个200A的光伏直流断路器。


系统与电池参数:



图10 光伏直流测系统线路示意图260W电池组件22串16汇6个汇流箱组成的500kW发电单元


3.1 第一种情况(故障发生在熔断器下侧,即组件串侧)短路故障分析

图11 第一种位置的短路故障

 

 

 

 

 

 



当短路发生时,逆变器会检测到电压快速下降,一方面会自行关闭,另一方面会立即让交流接触器断开,所以不会有交流电反窜到直流侧。
Iback=(16-1)*1.25*9A=168.75A (Isc照度为1000W/m2)
另外,2#-6#汇流箱(共计5个汇流箱)理论上也会产生反向电流流向故障点。
Iback2=9A*16*5=720A

图12 ABB Tmax T4N/PV 200A光伏专用直流断路器脱扣曲线[8]

图13 Bussman的15A-gPV级熔断器的时间电流曲线[9]
假设720A的Iback2电流能够达到理论计算的最大值720A,720÷200(In)=3.6倍,我们通过脱扣曲线可知ABB断路器的脱扣时间为6s。


图14 ABB 200A断路器脱扣时间和Bussman15A熔断器熔断时间[8], [9]


可见,流入故障点的电流为Iback 与Iback2的叠加之和,在短路电流快速上升过程中由于15A的gPV级熔断器熔断速度非常快,故障组串线路的正极或负极串联的熔断器将会熔断切除故障线路。其上一级串联的2个200A断路器(包括汇流箱出线侧与逆变器直流侧)不会脱扣,也来不及脱扣。

 

 

 

 

 

 



3.2 第二种情况(故障发生在汇流箱内熔断器上侧汇流铜排)短路故障分析

图15 第二种位置的短路故障


在此种情况下,即使组串的Isc达到了9A(照度为1000W/m2)可以顺利通过15A的熔断器,或者说汇流箱进线侧的熔断器并不是为了保护自身组串侧达到短路状态而进行线路保护设置的,而是为了防止反向电流的冲击而设置。所以1#汇流箱内熔断器均不会熔断。


而此短路点会导致其他汇流箱产生的反向电流Iback2使汇流箱出线侧或逆变器直流侧的断路器脱扣,究竟是汇流箱内的断路器脱扣还是逆变器内的断路器脱扣,还是同时脱扣,由于根本没有选择性,所以无法确定。

3.3 第三种情况(故障发生在汇流箱内断路器出线侧与逆变器直流侧断路器进线侧)短路故障分析


 图16 第三种位置的短路故障


第三种短路情况发生时,Isc按9A(照度为1000W/ m2)考虑,16路汇流箱内自身16路组串产生的短路电流为16*Isc=16*9A=144A,这一短路电流值对于安装在汇流箱出线侧的这一200A断路器来讲根本就不会脱扣。而逆变器直流侧的短路电流Iback2将会使得逆变器直流侧的断路器脱扣。


3.4 第四种情况(故障发生在逆变器内部总的汇流铜排)短路故障分析

图17 第四种位置的短路故障

 

第四种短路故障发生时,每一路组串都会达到短路状态,短路电流的大小跟照度有关,若Isc按9A(照度为1000W/ m2)考虑,16路汇流箱内自身16路组串产生的短路电流为16*Isc=16*9A=144A。这一短路电流可以顺利流过汇流箱出线侧和逆变器直流侧的2个200A的断路器。这一种情况下光伏系统直流侧的所有过电流保护装置不会有任何动作。

至此,我们已经将集中式光伏系统直流侧各个位置发生短路的情况进行了全面的考虑,现在我们对各种短路情况下的各个位置的过电流装置的相应情况进行总结:

可见汇流箱出线侧的直流断路器脱扣的机会很小,或者说是由于糟糕的系统设计,使得串联在一起的同样电流等级的断路器没有选择性保护在第二种短路故障的情况下才会脱扣。过电流保护装置选用时忽略了选择性保护这一重要原则,在低压电器的正确选用上是一个非常低级的错误。


这就解释了为什么国外的汇流箱里面装的都是负荷隔离开关(switch-disconnector)而不是断路器,因为此位置的低压电器是不需要具备过电流保护功能的。具备的脱扣功能反而在汇流箱所处的高温等较为恶劣的户外环境下成为了影响系统效率的不稳定因素。

 

 

 

 

 

 

 


附录1 欧美知名集中式光伏逆变器厂家直流侧过电流保护低压电器选用情况一览



附录2 欧美知名直流汇流箱产品内低压电器选用情况一览



注:以上欧美厂家的产品型号与元器件选型均来自其国外网站截止2015年9月可以供公众免费下载的公开资料,若有任何问题,请联系本文作者修正与删除。

 

作者简介

杜晓牧先生于2006年在上海交通大学电气工程系获得了电气工程与自动化工学学士学位,目前同济大学工商管理硕士(MBA)在读。在近十年的电气行业从业经历中,曾先后供职于上海电气、施耐德电气(中国)有限公司低压电气部门。

现就职于高览电气(上海)有限公司产品经理。

 

他十分热爱光伏行业,对国内外光伏行业的系统研究与运维具备自己独到的见解和观点。

 

 


参考文献来源
[1] 天合光能Trina Solar:Tallmax 大型项目组件 数据说明书 2015
[2] Jonh Wiles, "Ground-Fault Protection for PV systems“, January. February 2008 IAEI NEWS
[3] Y. Zhao, J. F. de Palma, J. Mosesian, R. Lyons, and B. Lehman, "Line-Line Fault Analysis and Protection Challenges in Solar Photovoltaic Arrays," IEEE Trans. Ind. Electron., to appear.
[4] Dr.-Ing. Herbert Bessei,“PV Fuse-links –Superior Protection of Valuable Photovoltaic Modules”,fuseXpert, 25.05.2009 德国
[5] Jason Fisher,David Brearley,"Ungrounded PV Power Systems in the NEC“,Issue 5.5, Aug/Sep '12,SolarPro.
[6] Marvin Hamon,"DC Combiners Revisited”, Issue 4.2, Feb/Mar '11,SolarPro.
[7] 天合光能Trina Solar:多晶Honey组件 TSM-PC05A数据说明书 2015
[8] The ABB Group, "SACE Tmax PV样本“,2014
[9] Eaton(Bussman),"Solar Circuit Protection Application Guide“,2014
[10] SMA Solar Technology AG," SUNNY STRING-MonITOR SSM8-21-BS / SSM16-21-BS / SSM8-21-BS-JP / SSM16-21-BS-JP Installation Manual“, 2015
[11] Jack D. Flicker,Jay Johnson,Sandia National Laboratories,美国圣地亚国家实验室,
" Photovoltaic Ground Fault and Blind Spot Electrical Simulations“,June 2013
[12] Jackson, P. (Pete). (2009). "Bakersfield fire report. Investigator’s report“, April 29, 2009,美国国家防火委员会网站 http://nfpa.typepad.com/
[13] Bill Brooks," The Ground-Fault Protection BLIND SPOT: A Safety Concern for Larger
Photovoltaic Systems in the United States", January 2012, 美国光伏标准与法规委员会,Solar America Board for Codes and Standards
[14] Bill Brooks, Jack D. Flicker,Jay Johnson等,“Inverter Ground-Fault Detection“Blind Spot” and Mitigation Methods“,June 2013,美国光伏标准与法规委员会,Solar America Board for Codes and Standards
[15] Jack D. Flicker,Jay Johnson,“Analysis of Fuses for "Blind Spot" Ground Fault Detection in Photovoltaic Power Systems ",June 2013, 美国光伏标准与法规委员会,Solar America Board for Codes and Standards

引用标准
[1] 美国国家电气法规690部分:NFPA70, "National Electrical Code," in Article 690 - Solar Photovoltaic Systems, ed, 2011.
[2] UL 1741标准:Underwriters' Laboratory, "Inverters, Converters, Controllers, and Interconnection System Equipment for Use with Distributed Energy Resources," UL 1741 ed.
Northbrook, IL, 2010.

 


索比光伏网 https://news.solarbe.com/201510/20/89830.html
责任编辑:carol
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
零下30℃,风雪侵袭,积雪覆盖,深圳安泰科柔性支架如何破局极端风雪环境?来源:安泰科能源股份 发布时间:2026-02-06 15:48:18

寒冬时节,戈壁滩气温降至-30℃,大风裹挟碎雪,厚重积雪压覆光伏组件,光伏支架面临严酷的极端环境考验。深圳安泰科柔性支架摒弃传统刚性抵御模式,以结构创新实现“以柔驭风”,从结构、设计、材料等多方面发力,为极端风雪环境下的电站安全保驾护航。安泰科从源头严控品质,所有配件均按高于国际标准的要求,开展防腐、盐雾及抗寒耐候测试,确保极端条件下性能稳定。

2025全国新能源并网消纳情况公布:光伏94.8%来源:电力行业规划研究与检测预警中心 发布时间:2026-02-06 14:49:10

2月6日,电力行业规划研究与检测预警中心公布2025年各省级区域新能源并网消纳情况,2025年风电利用率为94.3%,光伏发电利用率为94.8%,其中甘肃、青海、新疆、西藏光伏发电利用率低于90%。

Elmia Solar 2026 | 正泰新能亮相瑞典 助推欧洲能源转型来源:正泰新能 发布时间:2026-02-06 14:31:04

当地时间2月3-5日,北欧规模最大、最具影响力的太阳能专业展览会之一——ElmiaSolar2026在瑞典延雪平市隆重召开。正泰新能携ASTRON系列光伏组件惊艳亮相,向北欧乃至全球市场集中展示公司在技术创新、产品性能及可持续发展方面的雄厚实力与坚定承诺,吸引了众多行业伙伴、专业观众的高度关注。ElmiaSolar作为北欧地区太阳能行业最重要的交流与商贸平台,汇聚了产业链上下游的顶尖企业。展会期间,正泰新能向北欧领先光伏分销商Aprilice正式授予2026年分销商授权书。

吉林:推进新能源产业发展 年内投资逾千亿元来源:中新网 发布时间:2026-02-06 09:56:42

吉林省4日召开专题会议,研究2026年新能源开发及“绿氢+”产业发展工作。据悉,该省锚定今年新能源新增开发装机突破1000万千瓦,产业投资超过1000亿元。目前,该省“陆上风光三峡”工程持续推进,新能源产业链条聚优成势。

土耳其与沙特签署20亿美元可再生能源投资协议来源:央视新闻 发布时间:2026-02-06 09:55:18

当地时间2月3日,土耳其与沙特阿拉伯在沙特首都利雅得签署一项政府间可再生能源投资协议。沙特方面将出资约20亿美元,在土耳其建设总装机容量达5000兆瓦的太阳能和风电项目。土耳其能源与自然资源部长巴伊拉克塔尔表示,这批太阳能电站建成后,预计可满足约210万户家庭的用电需求,将成为土耳其能源领域规模最大的外国直接投资之一。他指出,该合作项目是土耳其推进能源转型和扩大清洁能源装机容量的重要一步。

江西:2025年综合整治“内卷式”竞争 推动光伏等领域落后产能有序退出来源:江西省人民政府 发布时间:2026-02-06 09:47:00

日前,江西省2025年国民经济和社会发展计划执行情况与2026年国民经济和社会发展计划草案的报告发布,报告指出,纵深推进改革和扩大开放,动力活力不断激发。严格落实“全国一张清单”管理模式,部署开展全省滥用行政权力排除、限制竞争专项行动,清理妨碍统一市场和公平竞争的政策措施1230件。综合整治“内卷式”竞争,推动新能源汽车、光伏等领域落后产能有序退出。

不止于发电!一道新能DBC技术开启光伏全场景应用“无界时代”来源:一道新能 发布时间:2026-02-06 09:38:01

自2020年启动BC技术研发以来,一道新能DBC组件在性能、场景适配与产业化能力方面形成独特优势,成为BC技术阵营的“性能标杆”。一道新能通过DBC技术的持续创新,不仅展现了中国企业在光伏高端前沿技术领域的研发实力,更以“性能领先、场景适配、成本可控”的产品,为BC技术的产业化落地提供了核心支撑。

再签2GW!隆基绿能欧洲强势开局来源:隆基LONGi Solar 发布时间:2026-02-06 09:31:21

2月5日,隆基与欧洲知名能源解决方案提供商Energy3000正式续签为期三年的合作框架协议。这也为隆基在2026年欧洲市场的拓展奠定了坚实开端。■隆基获得2026年德国卓越奖“能源与环境”类别大奖此次与Energy3000的2GW框架协议,是隆基以技术创新为基石,以市场多元策略为驱动,在欧洲深化长期客户关系、引领高效产品应用的关键举措。隆基正通过一系列扎实行动,持续强化其在欧洲市场的领先地位,为区域能源转型注入持久、可靠的绿色动能。

光伏胶膜价格上涨,光伏玻璃厂家有意稳价来源:索比咨询 发布时间:2026-02-06 09:28:59

更多价格信息/报告分析,扫码进入小程序注册登录免费查看本周EVA粒子价格不变。综合来讲,下周EVA市场价格或僵持整理,伴随着下游陆续放假,贸易商进入收尾工作,物流逐步停滞,市场交易进一步减少。综合预判,下周EVA市场价格或维稳。本周电缆电解铜价格上涨,涨幅2.1%。下周来看,玻璃厂家出货有放缓预期,库存转为增加趋势。价格方面来看,虽组件企业存继续压价心理,但目前生产已无利可图,玻璃厂家有意稳价,买卖双方博弈。

2026年中国及全球风光水发电能力权威预测数据来了!来源:能见 发布时间:2026-02-06 09:23:19

2月5日,全球能源互联网发展合作组织与中国气象局国家气候中心共同发布了《全球风光水发电能力年景预测2026》成果。这也是全球首个风光水年度发电能力预测成果报告。首先来看关于中国的预测数据。报告预计2026年中国光伏平均可发电小时数与2025年基本持平,考虑新能源的发展,总发电能力将增长约25%。

西班牙20GW太阳能硅片工厂即将开工!来源:光伏见闻 发布时间:2026-02-06 09:16:51

西班牙企业Tresca近日表示,将牵头负责Sunwafes公司在西班牙规划的20GW太阳能硅片超级工厂建设,核心目标为加快本土产能落地、优化绿色生产工艺、带动当地高技能岗位增长,依托N型技术路线稳步推进,实现从试点到规模化的跨越式发展,助力欧盟筑牢光伏产业链韧性。西班牙工程公司Tresca已正式受任该项目的业主工程师,负责工厂设计、电网接入、调试验收、安全及性能检测等核心工作。

新闻排行榜
本周
本月