新型半透明太阳能电池问世:转换效率高、成本低

来源:新材料在线发布时间:2015-09-13 23:59:59
摘要:科学家已经成功地开发出带有石墨烯电极的高效低成本半透明的钙钛矿太阳能电池。这项新发明的能量转换效率在12%左右。

香港理工大学发明带有石墨烯电极的半透明钙钛矿太阳能电池的能量转换效率(PCEs)在12%左右,远高于现有的半透明太阳能电池。

(图片来源:香港理工大学)
 使用高效低成本的透明或者半透明太阳能电池替代目前不透明且昂贵的硅太阳能电池板已经变得越来越重要,因为不断建设集成光电(BIPV)系统的需求。香港理工大学(PolyU)应用物理系已成功开发了带有石墨烯电极的高效低成本半透明钙钛矿太阳能电池。这项新发明应用底部氟掺杂锡氧化物(FTO)和顶部石墨烯电极,其能量转换效率在12%左右,而常规半透明太阳能电池具有7%的效率,其可能的成本低于0.5港元/瓦特,与现有硅太阳能电池相比,成本降低超过50%,这将使它在未来能够得到广泛的应用。

太阳能是一种重要的可再生能源,通过光电效应,太阳能电池将直接被用来将光能直接转化成电能。第一代晶体硅太阳能电池板具有稳定的能量转换效率,但昂贵且不透明。第二代太阳能电池,即薄膜太阳能电池,重量轻且具有柔性。然而,它们由具有复杂结构的稀土材料构成,而且需要高温处理。生产高能量转换效率太阳能电池板的研究目标是方便制造且成本低,这些年来,科学家们一直在研究第三代太阳能电池。最近作为一种新型第三代太阳能电池,钙钛矿太阳能电池具有高转换效率,便于制造和低成本优势,受到了大量的关注。

为了提高太阳能转换效率和降低半透明太阳能电池板成本,香港理工大学的研究人员开发了第一个带有石墨烯电极的半透明钙钛矿太阳能电池,石墨烯是太阳能电池中透明电极的一种理想选择,具有高透明度,高导电性和可能的低成本优势。太阳能电池的半透明特性使得它能够吸收两边的光线,可广泛用在窗户、外墙、百叶窗和屋顶建筑,将太阳能转化为电能,从而充分地增加收集太阳能的表面积。



作为先进材料的石墨烯在十多年前被发现,香港理工大学创新地使用简单处理技术,来提高石墨烯的电导率以满足太阳能电池的应用要求。首先,通过覆盖一层薄薄的导电聚合物-聚(3,4-乙烯二氧噻吩):聚(聚磺化苯乙烯)(PEDOT:PSS),使石墨烯的电导率得到显著提高,该聚合物作为层压工艺中钙钛矿活性层的粘接层。其次,为了进一步提高能量转化效率,香港理工大学研究人员发现,通过利用多层化学气相沉积石墨烯作为顶部透明电极来制备太阳能电池,在保持电极高透明性的同时,电极表面电阻可能会进一步降低。最后,这项新发明的性能可通过改善顶部石墨烯电极和钙钛矿膜上的空穴传递层(spiro-OmetaD)的接触而得到进一步的优化。

由于石墨烯良好的机械灵活性和方便制备性,利用印刷或卷对卷工艺技术,香港理工大学的发明可实现半透明钙钛矿太阳能电池的大规模生产。半透明太阳能电池将填补目前主导市场的太阳能电池无法被应用的市场空白。

研究结果已被发表在材料科学一流期刊《AdvancedMaterials》上。 

索比光伏网 https://news.solarbe.com/201509/13/184087.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
室内光照条件下,新型太阳能电池光电转换效率创新高来源:钙钛矿材料和器件 发布时间:2025-09-10 13:54:00

此次设计的新型钙钛矿光伏器件,在室内光照条件下,能量转换效率达到商用同类产品6倍左右,同时展现出优异的耐久性,预计使用寿命可超过5年,远超此前多数实验室原型仅能维持数周或数月的表现。实验结果显示,该电池在1000勒克斯照度的室内光下,实现了37.6%的光电转换效率,创下带隙为1.75eV的钙钛矿太阳能电池在室内光照条件下的世界纪录。

用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学来源:钙钛矿学习与交流 发布时间:2025-07-10 11:12:04

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。 这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件

隆基绿能叠层电池研发成果连续在《Nature》和《Science》在线发表来源:隆基绿能 发布时间:2025-07-08 08:39:41

晶硅-钙钛矿叠层太阳电池因其有望超越单结电池的肖克利-奎伊瑟(Shockley-Queisser)效率极限,而成为当前全球先进光伏技术研究的热点。受制于短波光子的热驰豫损失,传统晶硅单结太阳电池效率的进一步提升面临瓶颈。为此,科学家们提出将宽带隙钙钛矿与晶硅集成,通过构建串联叠层太阳电池,有效减少载流子热驰豫损失,充分利用太阳光能,实现光电转换效率的突破。叠层太阳电池被公认为下一代超高效先进光伏技术。

通过微型聚光器提高钙钛矿太阳能电池效率和可持续性来源:钙钛矿材料和器件 发布时间:2025-07-07 17:25:19

意大利的研究人员正在解决两个金属卤化物钙钛矿太阳能光伏挑战,减少铅的使用并延长功率转换效率的稳定性,采用微聚光器和皮秒激光加工的新型组合。

新加坡国立大学侯毅最新AM:符合行业标准的全层压钙钛矿-CIGS叠层太阳能电池(共蒸发钙钛矿)来源:钙钛矿太阳能电池 发布时间:2025-07-07 09:07:22

2025年7月4日新加坡国立大学侯毅于AM刊发符合行业标准的全层压钙钛矿-CIGS叠层太阳能电池(共蒸发钙钛矿)的研究成果,本文介绍了一种使用可扩展共蒸发技术制备的高效稳定的双层甲基铵碘化铅钙钛矿。在该双层结构中,在厚的化学计量钙钛矿薄膜上沉积了一层具有增强PbI₂蒸发速率的薄层。这种方法降低了薄膜粗糙度,并改善了钙钛矿界面处的接触电势差。这种界面工程策略首次增强了吸收膜的稳定性,使得能够通过原子层沉积法沉积SnOx缓冲层而不会损坏钙钛矿层。该双层薄膜用于制备单结太阳能电池,实现了23.1%的最大功率转换

全国首个地埋式储能项目落地,沃橙新能源开启储能3.0时代,重新定义储能安全!来源:浙江沃橙新能源有限公司 发布时间:2025-07-04 15:22:30

近日,储能行业迎来历史性突破——浙江沃橙新能源有限公司自主研发的地埋式储能技术,正式通过中国电工技术学会储能领域阶段评审并落地建设,填补了多项储能领域关键技术空白,标志着储能产业正式迈入以“本质安全+智能创新”为核心的储能3.0时代。

电子科技大学刘明侦 NC:29.88%!柔性钙钛矿/硅单片叠层太阳能电池效率接近30%!来源:钙钛矿人 发布时间:2025-07-04 09:16:00

柔性钙钛矿基叠层太阳能电池具有成本低、重量轻、便于携带和整合等优点,在能量收集方面具有巨大的应用潜力,其中柔性钙钛矿/单晶硅叠层太阳能电池在实现高效率方面尤其有希望。然而,柔性钙钛矿/单晶硅叠层太阳能电池的性能仍然存在很大的差距,由于在同时实现有效的光生载流子传输和可靠的残余应力缓解方面的挑战。

光伏发电:绿色能源背后的安全真相大揭秘来源:索比光伏网 发布时间:2025-07-03 18:02:13

在环保理念日益深入人心的当下,光伏发电作为一种清洁、可持续的能源形式,正逐步融入人们的日常生活,并在世界各地得到大规模应用。然而,关于光伏发电是否会对人体造成危害、是否存在辐射风险等问题,仍有一部分人心存疑虑。就让小编带您更全面地认识光伏发电。

隆基:钙钛矿叠层电池技术仍处于研发阶段,公司尚无量产计划来源:隆基绿能科技股份有限公司投资者关系活动记录表 发布时间:2025-07-03 10:02:51

根据公司2025年经营计划,公司将在今年重点优化产能结构,集中资源开展HPBC2.0 先进产能替换和升级迭代,预计到2025年底,公司HPBC2.0 电池、组件产能均将超过50GW。 截至目前,公司正在按照本年度经营计划稳步推进 HPBC2.0 产能升级,HPBC2.0 电池、组件产能持续增加。

SERIS 的钙钛矿-有机叠层太阳能电池效率达到 26.7% 的世界纪录来源:pv-magazine.com, Nature 发布时间:2025-07-01 11:23:59

创建钙钛矿-有机叠层器件,基于可实现17.9%的功率转换效率和28.60 mA/cm2的高短路电流密度的有机电池;它使用钙钛矿太阳能电池,开路电压为1.37 eV,填充因子为85.5%。

NREL认证34.2%!长春应化所携手隆基发Science:普适性双自由基SAMs导电性/均匀性/稳定性均显著提升!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-27 14:42:47

钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥了关键作用。要实现钙钛矿光伏技术的进一步发展,SAMs需兼具增强的空穴传输性能、优异稳定性及大面积溶液加工性,但同步满足这些特性的分子设计仍存在重大挑战。