从太阳能下游的应用角度看:高空长航时太阳能无人机关键技术

来源:光伏逆变电器行家发布时间:2015-07-29 23:59:59
小编前言:其实光伏的应用远远不只有太阳能并网发电,国内有些企业在并网发电领域里,由于激烈的市场竞争,已经奄奄一息。也许换个角度思考,扩充新的下游应用领域,开拓出新的蓝海应用市场,也是个不错的选择。比如下文介绍的:高空长航时太阳能无人机关键技术 ,开动思想,转换角度,也许能得到新的行业机会呢。

核心提示:以太阳能为动力的高空长航时无人机拥有广阔的应用前景,但制造这种无人机需要大量先进技术:高效率电力系统、轻量化结构和先进能源管理系统等,以提高无人机性能。

从太阳能下游的应用角度看:高空长航时太阳能无人机关键技术


NASA开发的长航时太阳能无人机“格里奥斯”号(Helios HP01)

高空长航时太阳能无人机具有飞行高度高、工作时间长、覆盖区域广、使用灵活、运行成本低和无环境污染等优点,成为执行情报、侦察、监视和通信中继等任务的理想空中平台,有着非常广阔的应用前景。

太阳能飞机在白天使用太阳能电池维持系统工作并对机上蓄电池充电;晚上通过释放蓄电池中储存的电能来维持整个无人机系统的运转。太阳光辐射强度在近地面受地球大气层影响显著,太阳能飞机通常要在距地面20km以上的临近空间飞行。如果能量平衡能够一直维持,那么高空飞行的太阳能无人机在理论上就可以实现数月乃至数年的不间断飞行。

随着太阳能电池、蓄电池和相关领域关键技术的突破,高空长航时太阳能无人机将会实现跨越式发展。

基于重量和能量平衡的飞行器总体综合设计

与其他使用燃料的飞行器相比,太阳能飞机有个特点,即在飞行过程中始终保持重量和能量平衡,没有燃料消耗带来的重量变化。正因如此,太阳能飞机的气动力设计属于“单设计点”。在飞机总体方案设计过程中,如果使飞机在设计点的效率达到最高,就可以把全机需用功率降到最低。

长航时太阳能无人机要完成长时间持续飞行,必须使整个系统在一昼夜内获得的可用能量与全机实际消耗的能量之间达到平衡。由于从太阳光获得的能量受到可用的太阳能电池面积影响,太阳能电池面积又与机翼面积密切相关,而实现夜间飞行所需要的蓄电池重量又影响到飞机总重,这些因素最终都会影响到飞机的翼载和推重比,因此在太阳能飞机总体设计过程中必须采用基于能量平衡的方法确定飞机的总体设计参数。

先进太阳能电池和储能系统

太阳能电池按基体材料的不同可分为:硅太阳能电池、化合物太阳能电池和有机太阳能电池。太阳能电池的性能,尤其是转换效率,是太阳能飞机基本性能的决定因素。近几十年来太阳能电池研究方面的进步很快,例如美国Solar Junction公司制造的三结叠层太阳能电池在418倍聚光条件下效率已达到43.5%。

表1 不同类型的蓄电池性能对比


除太阳能电池本身,太阳能电池在飞机上的施工工艺也是技术难点。通常太阳能电池既是产生电能的功能元件,同时又可作为飞机蒙皮的一部分承载部分气动载荷。过去的太阳能电池由于自身厚度薄、刚度差、易碎易裂,很难适应机翼上曲率变化大的部位。

当机翼受载变形时,电池可能严重受损。这就要求既要解决对太阳能电池的封装问题,又要为电池提供良好的铺设平台。为保证气动效率,太阳能电池不仅要保证安装时与飞机蒙皮共形,而且要保证在整个飞行过程中与蒙皮的紧密贴合,
所以太阳能电池的柔韧性也至关重要。

储能系统是太阳能飞机实现昼夜持续飞行的关键系统之一,目前在太阳能飞机上应用最成熟的主要有燃料电池和锂电池。虽然燃料电池的能量转换效率可以高达40%~50%,而且重量轻、符合环保要求,但由于燃料电池依赖燃料补充,无法满足长航时飞行对续航时间的要求,因此大多数太阳能飞机仍然采用高能量密度的锂电池来储备电能。

与其他电池相比,锂电池的能量密度大、电压高、自放电率低、循环使用寿命长、高温放电性能优于其他各类电池、不含有重金属有害物质,无环境污染等。表1为不同种类的蓄电池的性能对比。

尽管锂电池的能量密度已经很高,目前也只能满足电动推进系统的最低要求。因此,要满足高空长航时太阳能无人机的使用要求,储能器件还需有较大幅度的提高,另外,锂电池在高空低温环境下使用时的环境适用性也是需要解决的关键问题之一。

能源综合管理系统

高空长航时太阳能无人机通过太阳能电池将太阳能转化为电能,再通过锂电池或燃料电池的配合,以及相关电器附件,如功率转化器、电子调速器等设备的配合,驱动无刷直流电机和螺旋桨,为无人机提供动力,同时为机上的飞控、航电以及任务系统等设备提供能源。

由于供电和用电系统并存,而且大量不同用电品质的负载同时工作,因此,为了在有限的资源下最大程度地满足各单元的用电需求,需要通过能源综合管理系统实现对全机能源的管理分配和优化。通常对能源综合管理系统的要求有:实时接收飞行管理计算机给出的电力需求信息;实时探测太阳能电池、蓄电池的工作状态信息;根据测量信息对能源进行控制,满足不同阶段的能量需求:能够处理来自能源系统的突发故障情况等。

从太阳能下游的应用角度看:高空长航时太阳能无人机关键技术


能源综合管理系统的主要作用就是实时监测各单元的能源供给和需求,并合理高效地进行能量分配,使得太阳能电池吸收转换的能量得到最好的利用。太阳能无人机的飞行过程可以概括为能量的收集、储存、管理和消耗的过程。在设计过程中, 需要通过能源综合管理系统优化结构,提高能源利用率。

从太阳能下游的应用角度看:高空长航时太阳能无人机关键技术


“探路者”号太阳能飞机的桁架肋、圆管梁、薄膜蒙皮和太阳能电池。
完整的能源管理系统组成包括:地面站控制端、飞行控制模块、动力系统模块、电源系统模块、能源管理控制模块以及传感器模块等。地面站控制端将能源控制指令发射给机载计算机,机载计算机将无人机飞行的功率需求信息和能源控制指令以及传感器测量到的信息都传递给能源管理控制单元,能源管理控制单元将电力需求信息传递给电子调速器,以控制动力系统的功率输出,执行给定的能源管理控制策略,控制各个电源的输出以满足动力系统的需求。
 
索比光伏网 https://news.solarbe.com/201507/29/186871.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美媒:犹他州领导人正在密切关注太阳能开发工作,目标是将该州的能源供应增加一倍来源:SOLARZOOM光储一家 发布时间:2025-12-26 16:01:03

Operation Gigawatt:长臂行动:犹他州州长斯宾塞·考克斯去年宣布,该州将利用“上述任何一种”方式在未来十年内将能源产量翻倍。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

马斯克:计划每年部署100GW的太阳能AI卫星来源:SOLARZOOM光储一家 发布时间:2025-12-23 11:31:57

12月15日,特斯拉CEO埃隆·马斯克在社交平台“X”公开发声,明确表达对地球小型核电反应堆的否定态度,直言相关建造“简直愚蠢至极”。与此同时,他再次力推其太空太阳能AI设想,称太阳作为“天空中巨大的免费核聚变反应堆”,足以满足整个太阳系能源需求,地球上的小型核聚变反应堆本质是经济浪费。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

西湖大学王睿AM:无MA钙钛矿结晶与可扩展刮涂钝化实现高操作稳定性的钙钛矿太阳能模块来源:知光谷 发布时间:2025-12-22 08:52:19

钙钛矿太阳能模块要实现商业化,不仅需要高功率转换效率,还必须具备长期的操作稳定性。本研究西湖大学王睿等人通过三管齐下的策略解决了这些挑战。本研究为在工业相关条件下实现高操作稳定性的钙钛矿太阳能模块建立了机制框架。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。