晋能清洁能源科技有限公司采用应用材料公司的全新金属化系统,快速实现量产

来源:索比太阳能光伏网发布时间:2015-05-06 08:28:23
• 全新TempoTM系统能够实现高效太阳能电池的大产量制造
• 支持行业最高的电池产能和良率,提供最低拥有成本解决方案

中国上海,2015年4月28 日– 应用材料公司今日宣布,晋能清洁能源科技有限公司(以下简称“晋能”,公司网站http://www.jinergy.com)选用其全新Tempo™金属化系统,通过低拥有成本、高产能的解决方案实现高效电池的制造。Tempo系统旨在推进先进电池制造技术的发展,支持应用材料公司独一无二的Fine Line Double Print™(细线二次印刷,FLDP)技术,进而帮助客户增加产品的太阳能转换效率并提高良率。晋能清洁能源科技有限公司成立于2013年,其太阳能产品制造工厂座落于中国山西省,年产能为500MW太阳能电池和600MW组件。

晋能清洁能源科技有限公司总经理杨立友博士表示,“作为刚刚进入市场竞争激烈的光伏组件供应商,采用低成本的制造技术使我们快速达到高生产率和良率非常重要。晋能选择Tempo设备是因为该产品同时具有卓越的产能、精密度和成本效益。通过采用该设备,我们在八周内就平稳而快速地完成了从设备搬入到全面投产,并实现了多晶硅太阳能电池18.2%的平均转换效率,截至目前的最高转换效率达18.6%。”

“我们很高兴晋能选择了我们的Tempo系统,以满足其先进电池构造的投产目标,”应用材料公司副总裁兼能源与环境解决方案事业部太阳能产品总经理吉姆·穆林表示。“每年10瓦的‘效率时钟’推动着光伏行业迅速发展,电池制造商需要快速创新并升级他们的技术以提高电池转换效率。我们的全新Tempo系统利用应用材料公司在精密材料工程方面的专业知识,满足客户在行业内领先电池性能和成本的需求。”

随着行业“效率时钟”发展规律的逐渐深入,可量产的、高产能的Tempo系统能够减少先进电池制造方案投产所需的时间、风险和成本。除了能够让客户快速达到量产以外,Tempo系统还能轻松升级FLDP技术,以提高电池转换效率。同时,还可以进一步快速添加模块以扩展加工产能。在当今要求严苛的太阳能产业环境中,Tempo设备所提供的技术创新能够将制造工艺的精度和控制水平提升到一个新的台阶,以行业最低的总拥有成本实现高良率和高工厂产出。

应用材料公司(纳斯达克:AMAT)是半导体、平板显示器和太阳能光伏行业精密材料工程解决方案的全球领导者。我们的技术使智能手机、平板电视和太阳能面板等创新产品以更普及、更具价格优势的方式惠及全球商界和普通消费者。欲知详情,请访问 www.appliedmaterials.com。

索比光伏网 https://news.solarbe.com/201505/06/70641.html

责任编辑:solarstar
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

周二军&于润楠&谭占鳌Nat Commun:通过晶界缓冲调控拉伸应变实现柔性钙钛矿太阳能电池的高效稳定来源:知光谷 发布时间:2025-12-03 09:24:30

本研究嘉兴学院周二军、北京化工大学于润楠和谭占鳌等人通过引入金属螯合物,调控钙钛矿薄膜的纳米力学性能。该策略不仅聚焦于薄膜的纳米力学特性,还揭示了其物理性能与机械柔韧性之间的内在联系。纳米力学-光电性能协同调控:系统阐明了金属螯合物通过静电作用与氢键调控薄膜模量与应变,同步提升载流子寿命与器件稳定性,为柔性光电器件设计提供新思路。

陈雨&彭强EES:介电分子桥实现效率26.60%、高反向击穿电压且稳定的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-01 15:55:01

本文成都理工大学陈雨和四川大学彭强等人提出了一种介电分子桥策略,采用双氯膦调控钙钛矿结晶、抑制离子迁移、调节界面能带排列并钝化非辐射复合。最优器件实现了26.60%的光电转换效率,最大瞬态反向击穿电压达-6.6V。介电性能显著增强:F-CPP处理使钙钛矿介电常数提升约两倍,器件瞬态反向击穿电压高达-6.6V,反向稳定性大幅提升。高效率与高稳定性兼具:器件效率达26.60%,并在多种应力测试下表现出优异的长期稳定性。

王开&马静&刘生忠AEL:带隙与晶体质量的协同提升实现高效稳定钙钛矿/硅叠层太阳能电池来源:知光谷 发布时间:2025-11-28 10:23:55

宽带隙钙钛矿材料对叠层太阳能电池至关重要,但富Br软晶格可能引发严重的离子聚集与迁移,显著损害器件效率与稳定性。由此,晶体质量提升的钙钛矿薄膜表现出更高的离子迁移能垒和增强的界面载流子提取能力。这些协同效应使单结钙钛矿太阳能电池效率高达23.24%,单片钙钛矿/硅叠层电池效率达30.16%,并在热、湿、光应力下展现出优异的稳定性。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

李忠安&李楠AM:f-PSCs 效率25.11%!极性醚链段调控自组装单分子层实现高效且机械稳健的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-26 11:48:28

柔性钙钛矿太阳能电池是下一代便携式、可穿戴及建筑一体化光伏器件的理想候选者。这一双重功能促使EtOPACz在柔性基底上组装形成致密、均匀的分子层,从而增强界面附着力、改善钙钛矿薄膜质量并促进空穴提取。因此,采用EtOPACzSAM的f-PSCs实现了25.11%的卓越能量转换效率,为目前报道的f-PSCs中最高值之一。这些结果表明,极性醚链段工程为同时优化高性能f-PSCs的界面接触、电荷传输和机械耐久性提供了一条强有力的策略。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

AEM:混合学习实现自动化制备钙钛矿太阳能电池的重复性 >24% 效率来源:知光谷 发布时间:2025-11-25 14:33:54

实现高性能且具有良好重复性的钙钛矿太阳能电池仍然是一项重大挑战,因其本质上对制备过程波动和环境变化极为敏感。本研究为提高钙钛矿太阳能电池性能与重复性提供了实用策略,并为可扩展制造与材料加速开发奠定了基础。

段玉伟&彭强AM:原位自交联聚合与开环加成反应精密构建内部封装层,实现高效环保的钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:32:26

在钙钛矿顶部表面覆盖内部封装层对于提升钙钛矿质量、实现高性能钙钛矿太阳能电池至关重要。本文成都理工大学段玉伟和彭强等人通过硅氧烷基团的自交联聚合和环氧基团的开环加成反应,原位合成了一种新型内部封装层,以克服长期以来被忽视的IEL缺陷,例如消除副产物的不利影响,以及在提高钙钛矿质量和最小化Pb泄漏之间取得平衡。

新型界面工程方法实现了26.7%的倒置钙钛矿太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-11-19 13:37:47

通过进一步分析,科学家发现水平排列的PMEAI抑制了Pb和I空位的缺陷,并诱导钙钛矿/C60界面内建电场的反转,从而最大限度地减少界面复合损失。他们解释说,界面电场被PMEAI反转,从C60指向钙钛矿,显著加速电子提取并抑制复合,从而突破了钝化层对电流密度和填充因子的传统限制。电池在65摄氏度下1500小时后,仍保持97%的初始效率。