新式聚合物催生高效率太阳能电池

来源:集微网发布时间:2015-01-28 12:13:27

索比光伏网讯:科学家已经证实,碳基光电聚合物所制造的电子数量是加倍的,这有助于让任何一种太阳能电池的效率也加倍提升。

这种被称为“单态裂变(singlet fission)”的过程能从单一光子产生“同卵双生(identical twin)”的2个电子,而不是正常的1个,将大幅提升太阳能电池的理论最大输出值。这种过程不会损失能量转成热,多出来电子是透过在现有的太阳能电池上添加聚合物溶液所产生。

美国Brookhaven国家实验室研究员MattSfeir表示,要提升太阳能电池效率会遇到的困难之一,是电池所吸收的光能量会有一部分以热的形式损失:“不过在单态裂变中,1个光吸收单元会透过加乘程序产生2个电单元,而非传统太阳能电池的只有1个电单元以及热。”

此外,该技术采用的碳基聚合物(BaTi2Sb2O与BaTi2As2O),能液化并利用廉价的制程大量生产,而且基本上是以“印刷”的方式涂布到传统太阳能电池上。

“我们的材料可做为传统光电材料(有机或无机)的敏化剂(sensitizer);”Sfeir表示:“不同于过去曾报导过的裂变材料,我们的聚合物材料溶解为液体时也能有效运作,而且有具备以工业化方式大量生产的潜力。”

美国Brookhaven国家实验室透过在传统太阳能电池上涂布聚合物材料的方法达成单态分裂,让太阳能电池产生更多的电子

(来源:美国Brookhaven国家实验室)

其他研究人员也曾制作过单态裂变材料,最广为人知的就是并五苯(pentacene),但Sfeir表示他们所开发的材料效果依样好,而且更重要的是能更轻易地添加到现有太阳能电池上。

“并五苯以薄膜的型态能达到近200%的效率,而我们的材料之裂变是在单一聚合物链上发生,是唯一以溶液型态仍效果良好的、效率可达170%;”Sfeir表示:“我们有一个大致的框架,希望能用以制作种类更广泛的单态裂变分子与聚合物。而我们也在探索一些概念,让材料效率能更进一步提升至200%。”

Sfeir的团队也正在尝试将该技术的应用超越传统块状太阳能电池,前进以无机(非碳)奈米材料为基础的“第三代概念”;他表示:“我们的理想是打造热载子(hot-carrier)太阳能电池,能完全以我们的有机单态裂变材料溶液制程来组装。”

而Sfeir表示,其单态裂变材料能针对特殊应用客制化;例如会吸收可见光谱不同部分的特定形式太阳能电池:“我们已经证实一个通用的设计原则,能生产其特性适合特定应用的一系列材料;我们希望这能催生让特定形式太阳能电池最佳化的更多样化材料。”


Brookhaven实验室所属的功能性奈米材料中心(Center for Functional Nanomaterials,CFN),是采用时间解析光谱学(time-resolved optical spectroscopy)来诱发和量化Sfeir团队开发之材料的单态裂变,在过程中单个雷射光子会产生两个三重态激子(triplet type exciton)。Sfeir表示,它们采用了一种“瞬态吸收”技术,类似于拥有非常快速快门的摄影机。

“我们利用雷射脉冲将光能量推进材料中,然后以一连串较弱的光脉冲来观察那些光能量的变化;”Sfeir表示:“令人惊讶的是,我们确定单态裂变加乘程序主导衰变过程,此外CFN的运算丛集被用以替那些材料建立模型,还有理解单态裂变的设计需求。”

美国Brookhaven国家实验室研究员Matt Sfeir(右)以及CFN博士后研究员Erik Busby

(来源:美国Brookhaven国家实验室)

Sfeir指出,他们还利用Brookhaven实验室的雷射-电子加速器(Laser-Electron Accelerator Facility)来比较分别以脉冲幅解(pulse radiolysis)与直接光子吸收方式产生的三重态激子:“两种不同实验的差异,能让我们更确认裂变主导主要衰变过程。”

接下来Brookhaven实验室科学家的目标是生产一整个系列能运用在单态裂变制程的材料,然后针对太阳能电池应用将有机碳基材料最佳化。在证明每个光子能产生更多电子之余,他们期望能利用额外的刺激打造出效率更高的可用元件;此外他们还计划利用从有机太阳能电池最佳化的经验,来打造第三代无机太阳能电池。

Sfeir表示:“我们的梦想是打造一种太阳能电池,能利用有机裂变材料,完全以无机奈米粒子溶液制程来组装。”参与该研究的还包括来自哥伦比亚大学(Columbia University)的研究员。

原标题:新式聚合物催生高效率太阳能电池

索比光伏网 https://news.solarbe.com/201501/28/200909.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
北航孙艳明团队Angew:高效率有机太阳能电池新策略:聚集增强发光聚合物给体抑制非辐射复合来源:先进光伏 发布时间:2025-10-11 14:06:13

结论展望本研究通过设计具有聚集增强发光特性的高发光聚合物给体PINTSO-F,并将其作为第三组分精准定位至给体-受体界面,成功实现了对有机太阳能电池非辐射复合的有效抑制和电荷动力学的协同优化,最终获得了效率超过20%、非辐射电压损失低至0.192V的高性能器件。

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层来源:钙钛矿学习与交流 发布时间:2025-07-08 09:54:19

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电

华科/海南大学李雄 NC:26.46%!交联多功能双层聚合物缓冲层用于提高钙钛矿太阳能电池的效率和稳定性!来源:钙钛矿人 发布时间:2025-07-07 10:46:34

华中科技大学/海南大学李雄等人设计了一种由聚乙烯亚胺 (PEI) 和 2-((2-甲基-3-(2-(2-甲基丁酰基)氧基)乙氧基)-3-氧代丙基)硫代)-3-(甲硫基)琥珀酸 (PDMEA) 组成的双层多功能聚合物缓冲液,插入金属电极/传输层的界面。该缓冲液通过在金属层和 PDMEA 之间形成硫醚-金属-羧基螯合环来减轻金属原子扩散。此外,它通过基于 Lewis 酸碱反应的 PDMEA 羧基和 PEI 胺基之间的原位交联来促进高效的电子传输并抑制界面复合。因此,这种设计有效地减少了器件制造和作过程中不需要

山东大学张茂杰 EES:20.3%! 构建连续受体纤维网络&均匀相分离实现高效无添加剂有机太阳能电池!来源:钙钛矿人 发布时间:2025-07-03 09:34:14

稳定性评估表明,在连续照明 1200 小时后,设备仍能保持 85.3% 的初始效率。我们的研究结果建立了一种在无添加剂 OSC 中进行形态工程的新方法,为实现工业上可行的高性能器件提供了一条途径,并推动了有机光伏领域的发展。

黄劲松团队AM柔性钙钛矿太阳能电池技术:从实验室到商业化的突破与挑战来源:太阳能电池札记 发布时间:2025-06-26 15:18:29

太阳能电池技术更迭的历史洪流中柔性钙钛矿太阳能电池(f-PSCs)无疑是最耀眼的明星。黄劲松团队最新发表在《Advanced Materials》上的综述文章全面总结了这一领域的最新进展,揭示了柔性钙钛矿技术如何从实验室走向市场,以及在这一过程中面临的挑战和解决方案。作者分享给对柔性电池感兴趣的朋友。

南京大学最新Nature Energy!钙钛矿技术的终极体现来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-24 13:48:05

为突破这一限制并进一步降低光伏发电的平准化成本,超越单结器件效率极限的多结架构方案成为迫切需求。其中全钙钛矿叠层太阳能电池通过能带隙可调的钙钛矿材料,可将两个或多个能带互补的子电池集成于单一器件(如框1所示),该技术通过减少光子热化损失,使认证能量转换效率(PCE)突破30%,显著优于单结硅基(27.4%)和钙钛矿(26.7%,最高为27%了)电池。更值得注意的是,全钙钛矿叠层微型组件效率已达24.8%,超越单结钙钛矿组件23.2%的纪录。

苏州大学崔超华 Angew:20.17%!如何精细调控PDINN制备高效有机太阳能电池?来源:钙钛矿人 发布时间:2025-06-24 10:48:35

苏州大学崔超华等人开发了一种通用策略,通过掺入多氟取代的铜酞菁 (CuPc) 衍生物形成杂化 CIL,从而精细优化苝二酰亚胺型 CIL (PDINN) 的功能。研究发现,PDINN 和 CuPc 之间的氢键和 π-π 相互作用可以解决 CuPc 用作 CIL 的溶剂加工性问题。在 PDINN 层中掺入 CuPc 可改善薄膜形态、提高导电性并降低阴极功函数,从而提高 CIL 厚度公差并显着改善 OSC 的光伏性能。值得注意的是,使用 PDINN:F16CuPc 作为混合 CIL 的基于 PM6:D18:L8

青岛大学刘亚辉 AM:20.4%! 3D 架构受体用于具有低电压损耗的高效有机太阳能电池!来源:钙钛矿人 发布时间:2025-06-24 09:10:45

青岛大学刘亚辉等人概述了一种分子设计方法,该方法需要通过掺入降冰片烯的 3D 结构单元,将 3D 结构基序集成到熔环受体分子的中心核心或末端基团中,特别是 LLZ1、LLZ2 和 LLZ3。目的是通过改变这些分子的分子结构来调节这些分子的聚集行为,从而提高受体材料的光致发光量子产率 (PLQY) 值并减少相应器件中的非辐射复合电压损失。我们的研究结果表明,降冰片烯单元的引入有效地抑制了过度的分子聚集,并显着提高了受体分子的 PLQY 值。进一步的研究表明,只有同时具有高 PLQY 和中等结晶度的受体分子

四川大学李鸿祥&苏州大学李耀文 Angew:分子协同策略实现无掺杂空穴传输层,助力全印刷高性能钙钛矿太阳能电池组件来源:印刷钙钛矿光电器件 发布时间:2025-06-05 08:58:02

四川大学李鸿祥和苏州大学李耀文等人设计了一种高迁移率无掺杂小分子BDT-MB,并通过与聚合物D18结合提出了一种分子协同(MC)策略。研究发现,预聚集的聚合物D18可作为“晶种”,通过分子间C-H···π相互作用诱导小分子BDT-MB优先形成面朝上取向,从而抑制其不利组装行为。此外,D18的加入提高了溶液粘度,克服了小分子HTL在刀片涂覆过程中的溶质随机分布问题。这一策略成功实现了大面积、高均匀性且具有有序纤维状形貌的无掺杂HTL薄膜的印刷。

南京大学陈尚尚Science Advances:26.0%!poly-SAMs助力实现紫外稳定高效钙钛矿太阳能模组!来源:钙钛矿人 发布时间:2025-05-30 13:45:30

南京大学陈尚尚等人揭示了常用的自组装单层(SAM)-型HTL具有差的UV稳定性,这会对空穴提取造成不可逆的损害并损害器件稳定性。为了解决这个问题,作者开发了一种名为Poly-2PACz的聚合物和紫外线稳定HTL,与SAM型HTL相比,Poly-2PACz HTL具有与基质的强结合力和优异的抗紫外线性能。在环境条件下,使用Poly-2PACz HTL的PSC刮涂实现了26.0%的显着效率和出色的紫外线稳定性。电池即使在高强度紫外线照射约500小时后仍保持80%的初始PCE 。此外,Poly-2PACz具有良

华南理工大学严克友 Angew:28.51%!Poly-SAMs助力实现高效稳定的全钙钛矿叠层太阳能电池!来源:钙钛矿人 发布时间:2025-05-26 11:04:43

华南理工大学严克友等人采用引入聚咔唑膦酸的聚合物多齿锚定(PMDA)策略来设计底部界面并抑制相分离。多个重复膦酸基团在NiOx上的强化和均匀锚固显著优化了底部界面,抑制了不利的界面反应,从而缓解了WBG钙钛矿的相分离。因此,PMDA改性的WBG PSC显示出比对照设备更高的功率转换效率(PCE)(19.84%对18.18%),以及更好的设备光稳定性(T80=1200对500小时)。结合窄带隙(NBG)PSC,PMDA修饰的PTSC的PCE高达28.51%,器件运行光稳定性超过700小时(T80)