印刷传输定位在晶硅太阳能电池电极印刷生产领域的应用

来源:Solarzoom发布时间:2014-12-03 13:32:48
摘要:本文章介绍的印刷传输定位方法应用在晶硅太阳能电池电极印刷生产领域,适用于对印刷精度和印刷质量有较高要求的高效晶硅太阳能电池电极的高速量产印刷。

关键词: 晶硅太阳能电池印刷 直线传输式定位 高印刷精度高产能

1、背景技术

目前晶硅太阳能电池常规印刷机有两种结构,一种是采用旋转台面实现硅片上下料和印刷的印刷机结构;另一种是采用皮带传送硅片到印刷台面进行印刷的直线传输式结构。

采用旋转台面的印刷设备,如图1所示,可以同时在印刷台面1上完成硅片的上料和硅片的位置信息采集、在台面2上完成硅片的印刷、并在台面3上完成印刷后硅片的下料。由于整个过程中,硅片的上料和位置检测、印刷以及印刷后下料等工作可以同时进行,因此,该设备具有单位时间内高产出的特点。但是,由于旋转平台直径较大以及结构上的因素,旋转平台上的四个印刷台面很难保证高度的一致性,因此印刷台面与网版之间的间距容易产生差异。在印刷过程中导致不同印刷台面印刷出的电池片出现印刷质量差异,直至影响晶硅太阳能电池的光电转换效率。同时,由于大直径旋转平台在旋转定位过程中,将沿旋转台半径方向放大并累积X轴、Y轴和旋转轴三个自由度的误差,因此,采用旋转台面的电池片印刷设备不适合生产高精度二次套印、选择性电极等对印刷精度有较高要求的高效太阳能电池。


图1(图中600代表旋转盘;300表示印刷机构;数字1、2、3、4表示旋转盘上的印刷台面。)
采用皮带传送硅片的直线传输式印刷设备,如图2所示,皮带将硅片自左向右传送至印刷台面500上,印刷台面上的真空孔将硅片502吸附固定在印刷台面上。此时,位于印刷台面500下的相机系统5011采集硅片502的实际位置,位于印刷台面上方的网版300根据硅片502的位置进行网版定位并开始印刷。印刷后的硅片经皮带继续向右传输,完成其从印刷台的下料。由此可见,采用皮带传送硅片的直线传输式印刷设备,其硅片传输、硅片位置信息采集、网版定位、硅片印刷,以及印刷后硅片的传输下料过程必须先后依次进行,因此该类设备单位时间内产出较低,使单片电池片生产成本居高不下。同时,由于印刷台面500下方的相机系统5011必须自下而上识别硅片的位置信息,因此印刷台面无法使用印刷台面纸,印刷浆料极容易污染印刷台面,造成电池片良品率的下降。更为重要的是,没有台面纸的保护将大大提高硅片碎片率,残留的微小硅片颗粒也很容易嵌入台面上的真空孔,导致后续大量的印刷破片或隐裂,降低成品率和电池片品质,并造成大量不必要的停机时间。此外,由于硅片蓝色受光面朝上,位于硅片下方的相机系统无法采集硅片受光面上的第一次银栅线印刷图形或选择性电极型重扩区等图形信息,也就无法完成类似高效电池片的以图形位置为基准的图形对位印刷。同样,针对背表面钝化工艺电池片,自下而上的相机系统也有可能无法准确分辨硅片边沿和背电场激光刻槽,也就无法完成硅片的定位。



综上所述,目前常规采用旋转台面的晶硅太阳能电池印刷机无法实现高精度定位,各个印刷台面之间的偏差也导致电池片印刷品质一致性的偏差;而目前常规直线传输式的晶硅太阳能电池印刷机产能较低、碎片率高,并且无法实现高效电池片的图形定位印刷。
2、带有两套印刷台面的直线传输式印刷方式可以满足高产能高精度印刷

为了解决解决上述问题,并根据高效电池对图形识别、高定位精度及高速印刷的技术需求,本文提出一种新的硅片上下料和印刷的方法,采用直线运动单元驱动的两套印刷台面,交替完成硅片上下料和印刷。

如图3所示,当硅片101传输到印刷台面100上后,印刷台面100上的真空系统将硅片101吸附固定,位于印刷台面100上方的相机系统对硅片101进行外形检测,并根据电池片工艺对硅片101的位置信息、或硅片101上已有工艺图形的位置信息(如第一次印刷的正银栅线、或选择性重扩区等)进行采集。与此同时,印刷台面200处于在印刷网版300正下方的印刷工位,印刷设备完成对硅片201在印刷台面200上的印刷。印刷完成后,印刷台面200将带着印刷后的硅片201离开印刷工位,返回上下料工位;同时,印刷台面100将带着未印刷的硅片101离开上下料工位,进入印刷工位;在印刷台面100从上下料工位平移到印刷工位的过程中,网版300将根据相机系统采集的硅片101的位置信息进行定位。当印刷台面100抵达印刷工位后,网版300已经完成定位,印刷系统可以直接启动印刷工艺。


3、总结 利用两套印刷平台同时进行硅片的上下料、位置检测以及印刷,两台面交替工作保证了设备高产能。同时,印刷平台在上下料工位和印刷工位之间的运动只有一个机械自由度,可以充分利用现有高精度直线运动单元超高重复性定位精度的技术优势,满足高效电池片电极的高定位精度印刷要求。此外,相机系统位于上下料工位上方,可以直接识别高效电池片蓝色受光面上的工艺图形,进而可以实现根据工艺图形位置进行定位印刷。印刷平台上的硅片在印刷前的上料和印刷后的下料都在同一个上下料工位完成,可以利用一套视觉系统分别完成硅片印刷前上料后的破片外形检测、硅片位置或硅片上现有图形的位置检测,以及硅片印刷后的破片外形检测、硅片上电极印刷图形的检测(包括位置精度、断栅,网版图形等),从而实现更多的检测功能,并借助印刷后检测结果实现对印刷工艺的监控等功能(如通过监测网版的形变量提示网版更换周期,以及通过二次印刷不同位置栅线的宽度监测提示两个正银印刷网版的匹配性等),结合其他低张力大网版以及网版六自由度运动控制等功能,可进一步实现印刷质量的提升,并有效提升电池片光电转换效率,降低碎片率,从而从提高产能、印刷精度与印刷品质、降低碎片率等多角度达到提升单电池片品质、降低单电池片生产成本的目的。(文/徐州中宇光伏科技有限公司 辛国军 杰锐光能(苏州)有限公司 于国丰、杨杰)
索比光伏网 https://news.solarbe.com/201412/03/63322.html
责任编辑:carol
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

ACS Nano:通过分级消除表面碘空位实现高效稳定的FA₀.₉₅Cs₀.₀₅PbI₃单晶钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:48:18

通过在亚稳区进行连续溶质补给的晶体生长,有效清除了微米级深度的碘空位;随后采用有机铵后处理进一步消除最表层残留空位。这种协同策略显著优化了载流子传输并抑制了非辐射复合,从而将单晶钙钛矿太阳能电池的效率从22.8%提升至25.5%。效率与稳定性同步大幅提升:单晶钙钛矿太阳能电池效率从22.8%提升至25.5%,同时T工作寿命从200小时延长至1000小时,是目前报道中效率最高、稳定性最突出的单晶钙钛矿太阳能电池之一。

震撼!26.48%@52cm²!全湿法工艺下可印刷介观钙钛矿光伏模组破纪录!来源:知光谷 发布时间:2025-12-22 08:44:14

近日,经第三方认证,万度光能全湿法工艺下可印刷介观钙钛矿模组认证效率达26.48%,突破纪录!万度光能致力于介观光电子平台技术产业化,是国家高新技术企业、省级专精特新企业、上市后备“金种子”企业。依托华中科技大学自主研发“武汉电池”,凭借独特拓扑互穿3D注入新机制,开创全湿法第三代光伏技术新赛道。核心技术以全湿法工艺与三层介孔膜结构为基础,填注钙钛矿吸光材料即完成器件制备。

Science最新:钙钛矿层在工业纹理硅片上的一致性生长以制备高稳定性叠层太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-19 13:55:59

前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。