2011年5月30日本报刊登的《空间太阳能:未来新能源》一文,向读者展现了日本福岛核事故之后的全球清洁能源的新视野。2011年7月18日,本报发表的《空间太阳能再回公众视野》向读者介绍了日本、美国等国家的空间太阳能发电计划进展情况。在日前举行的中国能源环境高峰论坛上,中国科学院葛昌纯、姚建铨、余梦伦、王希季、闵桂荣、何祚庥等院士及美国空间技术协会会长马克·霍普金斯、欧洲空间能源集团首席技术官徐枫、美国国家空间协会理事大卫·邓禄普等对我国空间太阳能发电计划的现状、关键技术和国际合作等做出探讨。
2030年后或实现商业化
葛昌纯:作为一劳永逸地解决人类能源危机的终极能源,人们公认的只有两个:其一,是在地面上建立核聚变发电站;其二,是在空间建立太阳能发电站。特别是当建立核聚变发电站能否在50年内实现核聚变能发电商业化尚存在着争论的情况下,空间太阳能在技术上有可能在20-30年内实现商业化的预测对人们有巨大的吸引力。
早在上世纪九十年代,刘振兴院士、徐建中院士、李国欣教授就先后提出了开展空间太阳能的研究建议,我在本世纪初提出了“发展空间太阳能发电及关键材料研究”的建议。我国的空间太阳能发电及其关键材料的研究早在项目批准以前就开始,但至今未被列为国家重大项目,国家投入不多,进展不快,和空间太阳能发电研究发达的国家之间的差距正在拉大。
马克·霍布金斯:成功的空间太阳能计划必须能够以低廉的价格提供大部分地球所需要的电力。第一个或者是第一批能够达成这个目标的的国家,有机会将太阳系里几乎所有能源为其国家经济服务。太阳系的大部分能源与原料都在太空,而不是在地球上。从长远看来,能够控制这些资源的国家将会控制绝大部分的人类经济活动,将会在经济上和军事上统治地球。一个成功的空间太阳能计划对于国家力量平衡具有长期意义。
可行性和技术难点
葛昌纯:空间太阳能发电系统基本上由三部分组成:太阳能发电(或收集)装置、空间微波或激光转换发射装置和地面接收转换装置。太阳能发电装置将太阳能转换为电能;空间转换装置将电能转换成微波或激光并利用天线向地面发送能束;地面接收转换系统通过天线接收空间发来的能束,将其转换成电能或化学能。整个过程是一个太阳能、电能、微波或激光、电能(化学能)的能量转变过程。在这个过程中承载能量转换的相关材料至关重要。
在太阳能电池技术基础方面,我国已经具备了太阳能电池的技术基础与空间应用能力。
在空间技术基础方面,我国在人造卫星、载人航天和深孔探测三个航天技术领域实现了新跨越,尤其是神舟载人飞船和标志深孔探测能力的嫦娥一号的发射成功。我国已经是航天大国,目前已有多种型号的长征系列运载火箭,输送的有效载荷也越来越多,已能承担国际上各种卫星的发射业务。因此,在地球同步轨道建立一个空间太阳能卫星电站已经规划和实施。