再看看发电规模。从商业应用上看,风力发电比太阳能发电更成熟,可是,截至2011年底,美国的风电装机容量为47兆瓦,只占到夏季装机总容量的4%。由于美国风力发电的容量系数很小,2011年美国总发电量中,风电的比例只有3%。
从上世纪80年代的小型风力发电机至今,风电花了30年时间才取得了如此微小的占有率。与此相比,核电自从1957年投入使用以来,在30年内占据了美国总发电量的20%;燃气发电机出现于上世纪60年代初期,30年后,它也拥有了10%的份额。
人们对风电的发展速度抱有一种错误的乐观心态——这是因为,现有的增长率是从一个极小的基数算起的。从2001年到2011年,全球风力发电的总装机量翻了6番,可是这说明不了太多问题。这种高增长率是系统早期发展时的典型状态,尤其对于风电这种主要靠补贴来刺激发展的系统来说,情况更是如此。风力和太阳能发电的前景,还面临着另一个变数:利用新的水力压裂法,我们能够从页岩中开采出大量天然气。目前,在美国和加拿大之外,这种采钻技术还尚未被广泛使用。不过,在欧洲、亚洲和拉丁美洲的许多国家,页岩天然气储量都非常丰富,水力压裂法的潜力可观。法、德等国家禁止用这种方式开采天然气,因为它可能会破坏环境。然而,任何新能源都会引发这种担忧,甚至那些标榜着“绿色”的能源也是如此。此外,天然气发电非常的高效。以燃气轮机联合循环发电站为例,它利用燃气机散发的热能来产生蒸汽,并用它来驱动一台蒸汽发电机。而且,60兆瓦容量以内的燃气发电机组,仅用一个月的时间就能完成安装并投入使用;同时,它们选址灵活,可以方便地接入现有的输电网络。
作为碳排放两大巨头,中印的碳排放量超过了美国。
选址与维护
大型风电场的选址常常会引起争议。许多人要么不喜欢风电机的外形,要么讨厌它们的噪音,要么担心它们对迁徙鸟群和蝙蝠的不良影响。而有些选址在近海的风电项目也出现了这个问题。比如说,在马萨诸塞州的马萨葡萄园岛,原计划建造美国第一座近海风力发电场,然而由于当地居民的反对,这个项目被搁置了数年。风能的不连续性,使人们难以预估它在几天内的发电量,而大型风电机组运作经验的不足,又给项目带来了更大的不确定性。我们还需要一些时间,来了解风力发电机在20到30年寿命里的稳定性,以及维修费用。
另外,要利用风力发电场的电能,我们还得铺设大量的高压输电线,把它们接入电网。这可是一项既昂贵,又存在法律风险的工作。
设想一下,如果大型风力发电场都分布在风能充足,土地辽阔的美国中部大平原,那么我们还需要铺设几千公里的输电线,把电能送到东西海岸用电量大的地区。当然,对于面积不大,和邻国联系紧密的国家来说,这并不算什么大问题;这也是丹麦在风电领域领先的原因之一。
下一页> 余下全文