太阳能是取之不尽用之不竭的清洁(绿色)能源,近年来随着世界各国对环境问题的重视,将太阳能转换成电能的太阳能电池成为各国科学界研究的热点和产业界开发、推广的重点。相对于无机太阳能电池,聚合物太阳能电池具有成本低、制作工艺简单、重量轻、可制备成柔性器件等突出优点,另外共轭聚合物材料种类繁多、可设计性强,通过材料的改性可以有效地提高太阳能电池的性能。因此,这类太阳能电池具有重要发展和应用前景,成为重要的研究方向。
在科技部、国家自然科学基金委、中国科学院和化学所的支持下,中国科学院化学研究所高分子物理与化学国家重点实验室的科研人员与有机固体科研人员合作,最近在共轭聚合物光伏材料上取得系列进展。
在宽带隙聚合物太阳能电池给体材料中,一直以来以MEH-PPV, P3HT等宽带隙材料作为单层或者叠层光伏器件的主要材料。最近,他们设计合成了一种基于并噻唑的宽带隙D-A共聚物,其能量转换效率达到5.2%,为带宽在2.0 eV以上聚合物光电转化效率目前的文献报道最高值,研究结果发表在Macromolecules上(Macromolecules, 2011, 44, 4035–4037),并成为发表当月该期刊下载量前十。他们还首次将吸电子基团砜基引入到PBDTTT共聚物中合成了聚合物PBDTTT-S,该聚合物具有宽的吸收和较低的HOMO能级,以该聚合物为给体、PC70BM为受体的聚合物太阳能电池开路电压达到0.76 V, 能量转换效率达到了6.22%(Chem. Commun., 2011, 47, 8904-8906);同时,使用BDT单元的同分异构体BDP单元构建了新的聚合物光伏材料,开路电压高达0.8V、效率达到5.2%(Chem. Commun., 2011, 47, 8850-8852)。
最近,他们将PBDTTT类聚合物BDT单元上的烷氧基换成噻吩共轭支链、合成了两维共轭的新型聚合物PBDTTT-C-T(见图1),与带烷氧基取代基的PBDTTT-C相比,PBDTTT-C-T的空穴迁移率显著提高,吸收光谱有所红移并且HOMO能级有所下移,这些都有利于光伏性能的提高。以PBDTTT-C-T为给体、PC70BM为受体的聚合物太阳能能量转换效率达到了7.6%,为目前聚合物给体光伏材料的最高效率之一,引起国内外学术界甚至工业界的关注(Angew. Chem. Int. Ed., 2011, 50, 9697–9702)。
基于对基于BDT单元高效共轭聚合物光伏材料的系列研究成果,他们还应邀在Polym. Chem.上撰写综述文章(Polym. Chem., 2011, 2, 2453-2461)。
图1 基于噻吩取代BDT二维结构单元的共聚物PBDTTT-C-T的分子结构及其与烷氧基取代聚合物PBDTTT-C的对比
光伏行业最新动态,请关注索比光伏网微信公众号:GF-solarbe
投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com