太阳能的各种转换形式分析

来源:OFweek-太阳能光伏网发布时间:2010-11-16 10:08:59

太阳能是一种辐射能,具有即时性,必须即时转换成其它形式能量才能利用和贮存。将太阳能转换成不同形式的能量需要不同的能量转换器,集热器通过吸收面可以将太阳能转换成热能,利用光伏效应太阳电池可以将太阳能转换成电能,通过光合作用植物可以将太阳能转换成生物质能,等等。原则上,太阳能可以直接或间接转换成任何形式的能量,但转换次数越多,最终太阳能转换的效率便越低。

太阳能-热能转换

黑色吸收面吸收太阳辐射,可以将太阳能转换成热能,其吸收性能好,但辐射热损失大,所以黑色吸收面不是理想的太阳能吸收面。选择性吸收面具有高的太阳吸收比和低的发射比,吸收太阳辐射的性能好,且辐射热损失小,是比较理想的太阳能吸收面。这种吸收面由选择性吸收材料制成,简称为选择性涂层。它是在本世纪40年代提出的,1955年达到实用要求,70年代以后研制成许多新型选择性涂层并进行批量生产和推广应用,目前已研制成上百种选择性涂层。我国自70年代开始研制选择性涂层,取得了许多成果,并在太阳集热器上广泛使用,效果十分显著。

太阳能-电能转换

电能是一种高品位能量,利用、传输和分配都比较方便。将太阳能转换为电能是大规模利用太阳能的重要技术基础,世界各国都十分重视,其转换途径很多,有光电直接转换,有光热电间接转换等。这里重点介绍光电直接转换器件--太阳电池。世界上,1941年出现有关硅太阳电池报道,1954年研制成效率达6%的单晶硅太阳电池,1958年太阳电池应用于卫星供电。在70年代以前,由于太阳电池效率低,售价昂贵,主要应用在空间。70年代以后,对太阳电池材料、结构和工艺进行了广泛研究,在提高效率和降低成本方面取得较大进展,地面应用规模逐渐扩大,但从大规模利用太阳能而言,与常规发电相比,成本仍然大高。

目前,世界上太阳电他的实验室效率最高水平为:单晶硅电池24%(4CM2),多晶硅电池18.6%(4CM2),INGAP/GAAS双结电池30.28%(AM1),非晶硅电池14.5%(初始)、12.8(稳定),碲化镉电池15.8%,硅带电池14.6%,二氧化钛有机纳米电池10.96%。

我国于1958年开始太阳电池的研究,40多年来取得不少成果。目前,我国太阳能电池的实验室效率最高水平为:单晶硅电池20.4%(2CM×2CM),多晶硅电池14.5%(2CM×2CM)、12%(10CM×10CM),GAAS电池20.1%(LCM×CM),GAAS/GE电池19.5%(AM0),CULNSE电池9%(LCM×1CM),多晶硅薄膜电池13.6%(LCM×1CM,非活性硅衬底),非晶硅电池8.6%(10CM×10CM)、7.9%(20CM×20CM)、6.2%(30CM×30CM),二氧化钛纳米有机电池10%(1CM×1CM)。

  太阳能-氢能转换

氢能是一种高品位能源。太阳能可以通过分解水或其它途径转换成氢能,即太阳能制氢,其主要方法如下:

1、太阳能电解水制氢。电解水制氢是目前应用较广且比较成熟的方法,效率较高(75%-85%),但耗电大,用常规电制氢,从能量利用而言得不偿失。所以,只有当太阳能发电的成本大幅度下降后,才能实现大规模电解水制氢。

2、太阳能热分解水制氢。将水或水蒸汽加热到3000K以上,水中的氢和氧便能分解。这种方法制氢效率高,但需要高倍聚光器才能获得如此高的温度,一般不采用这种方法制氢。

3、太阳能热化学循环制氢。为了降低太阳能直接热分解水制氢要求的高温,发展了一种热化学循环制氢方法,即在水中加入一种或几种中间物,然后加热到较低温度,经历不同的反应阶段,最终将水分解成氢和氧,而中间物不消耗,可循环使用。热化学循环分解的温度大致为900-1200K,这是普通旋转抛物面镜聚光器比较容易达到的温度,其分解水的效率在17.5%-75.5%。存在的主要问题是中间物的还原,即使按99.9%-99.99%还原,也还要作0.1%-0.01%的补充,这将影响氢的价格,并造成环境污染。

4、太阳能光化学分解水制氢。这一制氢过程与上述热化学循环制氢有相似之处,在水中添加某种光敏物质作催化剂,增加对阳光中长波光能的吸收,利用光化学反应制氢。日本有人利用碘对光的敏感性,设计了一套包括光化学、热电反应的综合制氢流程,每小时可产氢97升,效率达10%左右。

5、太阳能光电化学电池分解水制氢。1972年,日本本多健一等人利用N型二氧化钛半导体电极作阳极,而以铂黑作阴极,制成太阳能光电化学电池,在太阳光照射下,阴极产生氢气,阳极产生氧气,两电极用导线连接便有电流通过,即光电化学电池在太阳光的照射下同时实现了分解水制氢、制氧和获得电能。这一实验结果引起世界各国科学家高度重视,认为是太阳能技术上的一次突破。但是,光电化学电池制氢效率很低,仅0.4%,只能吸收太阳光中的紫外光和近紫外光,且电极易受腐蚀,性能不稳定,所以至今尚未达到实用要求。

6、太阳光络合催化分解水制氢。从1972年以来,科学家发现三联毗啶钉络合物的激发态具有电子转移能力,并从络合催化电荷转移反应,提出利用这一过程进行光解水制氢。这种络合物是一种催化剂,它的作用是吸收光能、产生电荷分离、电荷转移和集结,并通过一系列偶联过程,最终使水分解为氢和氧。络合催化分解水制氢尚不成熟,研究工作正在继续进行。

7、生物光合作用制氢。40多年前发现绿藻在无氧条件下,经太阳光照射可以放出氢气;十多年前又发现,兰绿藻等许多藻类在无氧环境中适应一段时间,在一定条件下都有光合放氢作用。目前,由于对光合作用和藻类放氢机理了解还不够,藻类放氢的效率很低,要实现工程化产氢还有相当大的距离。据估计,如藻类光合作用产氢效率提高到10%,则每天每平方米藻类可产氢9克分子,用5万平方公里接受的太阳能,通过光合放氢工程即可满足美国的全部燃料需要。

太阳能-生物质能转换

通过植物的光合作用,太阳能把二氧化碳和水合成有机物(生物质能)并放出氧气。光合作用是地球上最大规模转换太阳能的过程,现代人类所用燃料是远古和当今光合作用固定的太阳能,目前,光合作用机理尚不完全清楚,能量转换效率一般只有百分之几,今后对其机理的研究具有重大的理论意义和实际意义。

  太阳能-机械能转换

20世纪初,俄国物理学家实验证明光具有压力。20年代,前苏联物理学家提出,利用在宇宙空间中巨大的太阳帆,在阳光的压力作用下可推动宇宙飞船前进,将太阳能直接转换成机械能。科学家估计,在未来10~20年内,太阳帆设想可以实现。通常,太阳能转换为机械能,需要通过中间过程进行间接转换。
 

索比光伏网 https://news.solarbe.com/201011/16/272979.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

复旦大学赵岩&王洋&梁佳Nat Energy:厘米级无富勒烯锡基钙钛矿太阳能电池实现14.51%认证效率来源:知光谷 发布时间:2025-12-09 14:33:49

富勒烯基电子传输层常用于锡基钙钛矿太阳能电池以实现高功率转换效率,但其存在成本高、合成复杂、电子迁移率低以及与钙钛矿相互作用有限等问题。该研究展示了非富勒烯ETL在锡基钙钛矿光伏中的潜力。研究亮点:高效率与大尺寸兼备:采用非富勒烯ETL材料P3,实现了小面积16.06%和大面积14.67%的高效率,且均通过第三方认证,为锡基钙钛矿太阳能电池的大面积化提供了可行路径。

朱宗龙等人EES:金属茂盐作为可调控掺杂剂提升钙钛矿太阳能电池效率来源:知光谷 发布时间:2025-12-09 14:14:09

我们揭示了掺杂机制,并证明此类掺杂剂可将钙钛矿/OSC异质结处的空穴提取效率提升45%。使用金属茂盐掺杂剂的钙钛矿/OSC光活性层,相比使用传统LiTFSI基掺杂剂的薄膜,对湿气诱导降解的耐受性显著增强。显著增强器件界面稳定性与空穴提取金属茂盐掺杂剂及其反应副产物中性二茂铁能有效钝化钙钛矿表面,诱导能带弯曲并形成表面杂化态,从而提升空穴提取效率。

苏州大学袁建宇Nat. Commun.:原位熵配体工程实现高效率量子点太阳能电池来源:知光谷 发布时间:2025-12-09 14:11:57

本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

中节能&宁夏海原县:签署500MW光伏项目开发协议来源:智汇光伏 发布时间:2025-12-09 09:29:18

12月3日,中节能太阳能股份有限公司与宁夏自治区中卫市海原县人民政府签订光伏项目投资框架协议,双方就合作推进建设一期500兆瓦光伏发电项目达成一致意向并展开深入交流。

KHP钝化埋底界面实现高效稳定钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-05 14:43:00

近日,中国科学院上海高等研究院光源科学中心研究人员成功将邻苯二甲酸氢钾作为多功能添加剂引入SnO2电子传输层,以同步改变ETL性质和SnO2/钙钛矿埋底界面。此外,KHP在ETL中均匀分布,并在热退火过程中逐渐扩散至埋底界面和钙钛矿层,进一步与未配位的Pb离子配位,降低钙钛矿的表面及体相缺陷密度,缓解薄膜内部应力。