首页 资讯信息 研究咨询 服务应用 展会会议 视频图片 期刊专栏 新媒体
关闭
关闭

太阳能转换效率研究回顾分析与未来展望

发表于:2009-12-28 15:27:00    

  3.纳米结构半导体电极的光电能量转换

九十年代以来随着纳米结构半导体材料的发展,为新一代光电转换材料的研究指明了方向。半导体纳米结构材料具有不同于体材料的一些光学、电学特性,对光电化学能量转换过程产生重要的影响,随着新材料的引进,相关的新概念、新理论和新技术也大大充实了半导体光电化学研究内容,成为当前光电化学研究中最为活跃的一个新领域,半导体光电化学的研究进入了一个新阶段。

3.1超晶格量子阶半导体电极

超晶格量子阶半导体是由两种不同的半导体材料交替生长厚度为几到几十原子层的超薄层,形成一个比原晶格大若干倍的新周期结构的人工半导体晶体。超晶格量子阱半导体电极具有独特的晶体结构和优于体材料的光电特性,如激子二维运动受限,不仅寿命长而且光吸收性能强,在相同浓度下载流子迁移率比体材料大,热载流子寿命大,增强了热载流子效应等,有利于提高光电转换效率,而且可以在单分子层水平上通过选择半导体材料的种类,调节势垒高度、势阱层的厚度等结构参数,设计生长高量子产率的超晶格量子阱电极。实现“能带工程”在光电化学能量转换中的应用。用分子束外延法设计生长适合于光电化学研究的晶格匹配型GaAs/A1xGa1-xAs量子阱电极(两种半导体材料的晶格常数之差小于1%)和应变型InxGa1-xAs/GaAs量子阱电极(两种半导体材料的晶格常数之差大于1%),研究其在非水溶液中的光电转换性能以及阱宽、垒宽、外垒及周期等因素对光电性能的影响。在室温下观察到对应于激子强吸收的光电流峰,随量子阱宽度从10nm减小到5nm,量子阱内能级分离程度增加,激子光电流峰明显蓝移,呈现显著的光电化学量子化效应和强激子光吸收性能,而阱宽10nm的单量子阱光电流量子产率与阱宽5nm的单量子阱量子产率基本相同,表现出二维激子的光吸收与量子阱宽基本无关的特性。但外垒厚度的增加,不利于光生载流子的界面电荷转移,激子强吸收效应退化。在多量子阱电极中的各量子阱是独立地参与界面电荷转移的,多量子阱电极的量子产率基本上可认为是各量子阱的加和。在以上研究的基础上成功设计生长了50周期四种不同阱宽GaAs/AlxGa1-xAs多量子阱电极,其激子吸收覆盖了整个测量波长,在二茂铁乙腈溶液中量子产率为GaAs体电极的三倍,表现出优良的光电转换性能。

通过多种瞬态、稳态技术的研究得到不同于体材料的界面热力学和动力学性能,如GaAs/AlxGa1-xAs量子阱电极在非水溶液中空间电荷层电场分布——量子阱中是匀强电场。内垒则为较理想的耗尽层模型。量子限制Stark效应受溶液氧化还原离子与电极表面相互作用强弱的影响。实验结果和理论计算都表明,量子阱电极的表面复合速率比体材料GaAs慢,这是由于量子阱中的光生载流子主要通过热发射进行分离,限域在量子阱中空穴热发射到价带连续带能级的时间比电子快数百倍,因此空穴界面分离速率远高于电子。这也是GaAs/A1xGa1-xAs电极量子产率高的一个重要原因。另外GaAs/AlxGa1-xAs和InxGa1-x/GaAs两种量子阱在非水溶液中都表现出光生载流子界面隧穿电荷转移所导致的不同于体材料的光电流一电压关系的异常行为。3.2纳晶多孔半导体薄膜电极

纳晶多孔电极是另一类研究较多的纳米结构半导体电极,它是由几纳米到几十纳米的半导体纳晶粒子组成的具有三维网络多孔结构的薄膜电极,保持了半导体纳米颗粒的量子尺寸效应、表面效应、介电效应以及所导致不寻常的光电化学行为。常用的涂敷法、化学沉积法、电化学沉积法、等离子体沉积法等方法在控制一定条件下都可用于制备纳晶多孔半导体薄膜。目前研究较多的是TiO2纳晶多孔薄膜,用溶胶-凝胶法或水热法制备的纳米胶粒直接涂敷在导电玻璃上,烧结后形成了比表面、比体材料多晶薄膜大1000倍的纳晶薄膜,在电解液中正面光照比背面光照得到的光电流小,表明光生电子在具有多孔性质的纳晶薄膜中的输运是浓度梯度下的扩散输运机制,而不是体材料电极在空间电荷电场驱动下进行电荷输运。在经过TiCl4和HCl表面改性后,光电性能明显改善,表面态密度的减小和电子输运通道的改善是主要原因。

用化学沉积和电沉积法制备平均粒径为几个纳米到十几纳米的CdSe和CdTe纳晶薄膜,在多硫溶液中得到的光电流谱呈现光电流起始波长随纳晶粒径减小而兰移的量子尺寸效应。瞬态光电流和光电压谱研究了光生空穴和电子扩散控制的界面动力学机制,由于纳晶粒径小其界面不存在空间电荷层,光生电荷的分离主要依赖于光生空穴和电子进行界面氧化还原反应的速度差别,因此与体材料电极的界面电荷转移行为主要不同之处是界面复合速度较大,而且存在着经过表面态的间接电荷转移过程。另外还用表面光电压谱研究了CdS、Fe2O3、Nb2O5,等纳晶薄膜的光伏特性。

 

下一页>  余下全文
责任编辑:solar_robot
特别声明:
索比光伏网所转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

相关阅读

光伏行业最新动态,请关注索比光伏网微信公众号:solarbe2005

投稿与新闻线索联系:010-68027865 刘小姐:news@solarbe.com

扫码关注

2022年中国户用光伏品牌大会
2022年中国户用光伏品牌大会

2022年9月27日

浙江宁波

2022第二届华中光伏论坛
2022第二届华中光伏论坛

2022年9月22日

武汉洪山宾馆

投稿与新闻线索联系:010-68027865 刘小姐 news@solarbe.com 商务合作联系:010-68000822 media@solarbe.com 紧急或投诉:13811582057, 13811958157
版权所有 © 2005-2021 索比太阳能光伏网  京ICP备10028102号-1 电信与信息服务业务许可证:京ICP证120154号
地址:北京市大兴区亦庄经济开发区经海三路天通泰科技金融谷 C座 16层 邮编:102600