SPIE关注创新和新兴的太阳能光伏市场

来源:Solarbe.com发布时间:2009-03-31 19:15:40

在SPIE先进光刻会议的开幕式上,与会的演讲者都鼓吹说,当前的衰退正是新兴市场创新的好机会。

应用材料(Applied Materials Inc.,Santa Clara, Calif.)显示和薄膜太阳能产品事业集团的高级副总裁兼总经理Gilad Almogy提醒说,尽管2009年将是糟糕的一年,半导体工业仍将创造每季度万亿美元的收入,并在全球产生上十万个就业岗位。

Almogy指出平板显示(FPD)和光伏产业的类似摩尔定律。“FPD部分在过去9年内获得了极大的成长,”他补充说,这背后是同样驱动半导体产业生产力机制的摩尔定律。

 
晶硅和薄膜太阳能电池都需要降低每瓦成本。 (来源: Applied Materials)


光伏将是下一个快速成长的产业,他指出,尽管在2008年光伏产业达到了约5GW电能的峰值安装功率,仅占整个电力市场极微薄的销售收入份额。“这与20年前的半导体产业非常相似,”他说,“如果那时就有人知道晶圆厂会是今天这样的,每个需要花费50亿美金,有着难以置信的复杂程度,那么就会把它当作不可能的任务,并会对是否需要它们而产生怀疑。但是20年前 
,人们更不知道每个年轻人都会拥有一部iPod,总统甚至不能缺少电子邮件5分钟。”

Almogy指出,在平板部分,LCD采用相对简单的半导体技术进行生产。“两者存在数量级的差别;设计规则的区别则更大。然而,LCD的许多设备和半导体业是相似的,就像部分工艺一样,只是不需要持续的晶体管尺寸紧缩。LCD也遵循着摩尔定律,随着面板尺寸变大,单位面积成本在降低,技术也从微型显示监视器发展到高清电视产品,每种应用都在缩减成本。”

太阳能也从半导体技术中获利。“有两种产生光伏电力的方法,一种是采用5寸或6寸的硅片,与半导体相似,每个硅片上制作二极管;几个硅片依次接在一起形成组件。”另一种是采用薄膜技术,将材料沉积在玻璃基板,然后在上面制作刻线和二极管,他说。太阳能光伏等比紧缩(scaling)的因素与增加的尺寸无关,而与增加的效率相关。

 
Bernie Meyerson, IBM Fellow

IBM系统和技术集团(Armonk, N.Y.)的CTO Bernie Meyerson则以“等比紧缩不再作用”开始了他的演讲。他表示,摩尔定律表明每12个月晶体管密度加倍,半导体工业经济也获得成长。“等比紧缩就像是一个指令,当芯片的晶体管数目加倍时,每个将只能消耗一半的能量,否则芯片将急剧燃烧。但是我们已经达到了技术的极限,不可能微缩一个原子。”

同时这位IBM院士表示,光刻面临严重的困境。过去这些年,从248到193nm,然后是193nm浸没式,波长一直在缩短,然后极紫外(EUV)光刻被推迟了,“EUV尚未为22nm做好准备。”

在22nm之前,业界必须寻找其他的方法,例如光源本身,因为像素化和正确选择掩膜照明方式是可能的。采用交互建模方法,有可能获得想要的结果。“然而,建模极其复杂,”Meyerson说,“需要一台超级计算机。要模拟每堆栈层各点的发光,以及与光刻胶和图形间的交互作用,来画出真正设计的内容。”IBM已经在22nm SRAM上制作了示范性产品,初步结果令人满意。

Meyerson指出需要“整体设计”,不仅仅是设计晶体管,而是设计整个系统,以最佳平衡光刻、芯片堆叠和晶体管的整个工艺技术。来源:Alexander E. Braun, Senior Editor -- Semiconductor International

 


索比光伏网 https://news.solarbe.com/200903/31/3859.html
责任编辑:张松
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美媒:犹他州领导人正在密切关注太阳能开发工作,目标是将该州的能源供应增加一倍来源:SOLARZOOM光储一家 发布时间:2025-12-26 16:01:03

Operation Gigawatt:长臂行动:犹他州州长斯宾塞·考克斯去年宣布,该州将利用“上述任何一种”方式在未来十年内将能源产量翻倍。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

马斯克:计划每年部署100GW的太阳能AI卫星来源:SOLARZOOM光储一家 发布时间:2025-12-23 11:31:57

12月15日,特斯拉CEO埃隆·马斯克在社交平台“X”公开发声,明确表达对地球小型核电反应堆的否定态度,直言相关建造“简直愚蠢至极”。与此同时,他再次力推其太空太阳能AI设想,称太阳作为“天空中巨大的免费核聚变反应堆”,足以满足整个太阳系能源需求,地球上的小型核聚变反应堆本质是经济浪费。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

西湖大学王睿AM:无MA钙钛矿结晶与可扩展刮涂钝化实现高操作稳定性的钙钛矿太阳能模块来源:知光谷 发布时间:2025-12-22 08:52:19

钙钛矿太阳能模块要实现商业化,不仅需要高功率转换效率,还必须具备长期的操作稳定性。本研究西湖大学王睿等人通过三管齐下的策略解决了这些挑战。本研究为在工业相关条件下实现高操作稳定性的钙钛矿太阳能模块建立了机制框架。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。