太阳能发电系统的最佳化设计

来源:上海电力学院发布时间:2008-08-18 10:17:18

   摘 要:独立太阳能发电系统需要进行最佳化设计。介绍了一种简明合理而又实用的最佳化设计方法。应用目前国外常用的倾斜面上太阳辐照量的计算公式,根据不同的蓄电池维持天数,应用能量平衡原理,得到相应的太阳能电池方阵最佳倾角,然后通过循环计算,得出一系列太阳能电池方阵和蓄电池容量的组合,再通过经济核算等,最后确定光伏系统的规模,编制了相应的计算机程序,并进行了实例计算。

  关键词:优化设计;光伏方阵;蓄电池;维持天数

  The optimumsizing ofstand-alone photovoltaicsystems

  YANGJin-huan,GELiang,CHENZhong-hua,WANGZheng-hong(ShanghaiInstitute of Electric Power,Shanghai200090,China)

  Abstract:Stand-alone photovoltaicsystemsshould be of optimumsizing.This articleintroduces a concise,rational and practi-cal method.The method adopts the calculatingformula currently used abroad fordeterminingthe solarradiation on tilted sur-face.According to the days ofautonomy and the principle ofenergy equilibrium,the optimumtilt angle ofphotovoltaic arrayis obtained first and then a series of capacity combinations of photovoltaic array and battery by means of cycle calculations.Thesize of photovoltaic systems is finally determined after further economic accounting.Arelevant computer programisworked outand a calculated example presented.

  Key words:optimumsizing;photovoltaic array;batteries;days of autonomy

  1 前 言

  近年来太阳能(又称光伏)发电得到了迅速的发展,在我国各种光伏系统及应用产品不断涌现,出现了前所未有的可喜局面。然而稍加分析便可看出,很多产品都没有经过仔细的最佳化设计,有的系统和产品是照猫画虎,以讹传讹;有的则根本不符合光伏发电的基本规律和工作特点,以致不能保证长期稳定可靠地运行,或者配置容量过大,造成大量浪费,影响了光伏电源的推广应用。

  在现阶段,太阳能电池的价格还较高,光伏系统应当根据负载要求和当地的气象地理条件进行最佳化设计,通过科学的计算方法,达到可靠性和经济性的最佳结合。然而,由于光伏发电系统运行时牵涉到的影响因素很多,关系错综复杂,设计计算相当困难。一些设计方法不是十分繁杂,就是不够完善。我们在以前工作的基础上[1],进一步做了修正和改进,总结出了一种简明合理而又实用的最佳化设计方法。

  光伏系统按供电方式大致可分为独立系统、混合系统和并网系统三大类,本文仅讨论应用最广泛的独立光伏系统的最佳化设计。

  2 技术条件

    2.1 负载性质

  独立光伏系统是指没有任何辅助电源,光伏发电是唯一电力来源的电源系统。

  实际负载的大小及使用情况等可能千变万化,从全天使用时间上来区分,大致可分为白天、晚上和白天连晚上三种负载。对于仅在白天使用的负载,多数可以由光伏系统直接供电,减少了由于蓄电池充放电等引起的损耗,所配备的光伏系统容量可以适当减小。全部晚上使用的负载其光伏系统所配备的容量就要相应增加。白天连晚上的负载所需要的容量则在两者之间。此外,从全年使用时间上来区分,大致又可分为均衡性负载、季节性负载和随机性负载。为了简化,对于月平均耗电量变化不超过10%的负载也可以当作平均耗电量都相同的均衡性负载[2]。本文仅讨论为均衡性负载供电的独立光伏系统的最佳化设计。

    2.2 影响因素的考虑

  影响光伏系统运行的因素很多,关系十分复杂,有的书上甚至列举了几十个修正系数。实际上因为现场条件和运行情况千变万化,既无法事先逐一确定其大小,也完全没有必要区分得如此细致,可将其组合成少量几个必要的修正系数,如果需要还可加上一定的安全系数来处理。

    2.3 太阳辐照量

  由于太阳辐射的随机性,无法确定光伏系统安装后方阵面上各个时段确切的太阳辐照量,只能根据气象台记录的历史资料作为参考。然而,通常气象台站提供的是水平面上的太阳辐照量,需要将其换算成倾斜方阵面上的辐照量。对于一般的光伏系统而言,只要计算倾斜面上的月平均太阳辐照量即可,不必考虑瞬时(通常是逐小时)太阳辐射通量。为了将水平面上的月平均太阳辐照量换算成倾斜面上月平均太阳辐照量,不少人还一直应用Liu和Jordan在1962年提出的计算方法[3,4]。这种方法虽然计算比较简单,但实际上只有在一年中的太阳二分点(三月和九月的春秋分)才是正确的。此方法用于朝向赤道的倾斜面上月平均散射辐照量的计算结果偏小。

  现在国外通常采用Klien和Theilacker提出的计算倾斜面上月平均太阳辐照量的方法[5,6],其计算方法是:
 
  其中:是倾斜面上月平均太阳辐照量与水平面上月平均太阳辐照量的比值;为水平面上月平均散射辐照量;为水平面上月平均总辐照量;β为方阵倾角;ρ是地面反射率。
  其中:ωss为倾斜面上日落时角;ωsr为倾斜面上日出时角;ωs是水平面上日落时角。
 
  其中:∮为当地纬度;δ是太阳赤纬;γ是方位角。对于朝向赤道的倾斜面,上述计算可以简化,在北半球朝向正南的倾斜面上,其月平均太阳总辐照量与水平面上月平均总辐照量之比为:
   
    2.4 方阵倾角

  固定式光伏方阵,应尽可能朝向赤道倾斜安装,这样一是可以增加全年接收到的太阳辐照量,二还能提升冬季方阵面上的太阳辐照量,而同时降低夏季的辐照量。这对于以蓄电池为储能装置的独立光伏系统是十分重要的。现在,有不少太阳能草坪灯等类光伏产品的太阳电池采用水平安装,这些产品本身容量比较紧张,更不应该采用水平安装的方式。

    对于光伏方阵的倾角,有些资料提出等于当地纬度,或当地纬度加上5°~15°[7],显然这是不合适的。实际上,即使纬度相同的两个地方,其太阳辐照量的大小及组成往往相差很大,如拉萨和重庆的纬度基本相同(仅差0.18°),而水平面上的太阳辐照量却要相差一倍以上,显然加上相同的度数作为方阵倾角是不妥当的。

  不少资料提出了确定方阵最佳倾角的方法,然而由于现代计算技术的进步,可以通过一定的计算方法,在满足负载用电要求的条件下,比较各种不同的倾角所需配置的太阳电池方阵和蓄电池容量的大小,从而决定方阵的最佳倾角。

  事实上,设计时对于不同的蓄电池维持天数,要求的系统累计亏欠量不一样,最佳倾角也不一定相同(见表1),所以不必事先确定。

    2.5 温度影响

  众所周知,在太阳电池温度升高时,其开路电压要下降,输出功率会减少。所以,有些设计方法在最后确定方阵容量时,考虑太阳电池温度系数的影响,从而增大容量[1,7]。然而,这种把方阵当作全年都处在最高温度下工作,显然是个保守的方法。实际上,现在常用的36片太阳电池串联为12 V蓄电池充电的标准组件,已经考虑了夏天温度升高的影响。而且,通常夏天太阳辐射强度较大,方阵发电量常有盈余,完全可以弥补由于温度升高所减少的电能,因此在计算太阳电池容量时可以不必考虑温度的影响。在特殊情况下,只要增加系统的安全系数即可。不过在温度较低时,蓄电池输出容量要受到影响,在冬天工作温度低于0℃时,应适当加以考虑。

    2.6 蓄电池维持天数

  通常是指没有光伏方阵电力供应的情况下,完全由蓄电池储存的电量供给负载所能维持的天数。有的资料建议在3~6d中选取[8],也可参考当地年平均连阴雨天数等因素而定。

  3 独立光伏系统优化设计步骤

    3.1 确定负载耗电量

  列出各种用电负载的耗电功率、工作电压及平均每天使用时数,还要计入系统的辅助设备如控制器、逆变器等的耗电量。选择蓄电池工作电压V,算出负载平均日耗量QL(Ah/d).

    3.2 计算方阵面上太阳辐照量

  输入当地地理及气象资料,根据2.3节所介绍的方法,计算不同倾斜面上的全年平均太阳辐照量

    3.3 算出各月发电盈亏量

  对于某个确定的倾角,方阵输出的最小电流应为:

    式中:η1为从方阵到蓄电池回路的输入效率,包括方阵面上的灰尘遮蔽损失、性能失配、防反充二极管及线路损耗、蓄电池充电效率等;η2为由蓄电池到负载的放电回路效率,包括蓄电池放电效率、控制器和逆变器的效率及线路损耗等。

    同样也可由方阵面上各月太阳辐照量中的最小值Ht·min得出方阵所需输出的最大电流为:
 

  方阵实际工作电流应在Imin和Imax之间,可先任意选取一中间值I,则方阵各月发电量为:

 
  如果△Q<0,为亏欠量,表示该月发电量不足,需要由蓄电池提供部分储存的电量。 
    3.4  确定累计亏欠量∑|-ΔQi|

    以两年为单位,列出各月发电盈亏量,如只有一个△Q<0的连续亏欠期,则累计亏欠量即为该亏欠期内各月亏欠量之和。如有两个或以上的不连续△Q<0的亏欠期,则累计亏欠量∑|-ΔQi|应扣除连续两个亏欠期之间ΔQi为正的盈余量,最后得出累计亏欠量∑|-ΔQi|。

    3.5 决定方阵输出电流

    将n1与指定的蓄电池维持天数n相比较,若n1>n,则增大电流I,重新计算,反之亦然。直到n1=n,即得出方阵输出电流Im。

    3.6 求出方阵最佳倾角

  改变倾角,重复以上计算,进行比较,得出最小的方阵输出电流Im值,相应的倾角即为方阵最佳倾角βopt。

    3.7 得出蓄电池及方阵容量

  这样可以求出蓄电池容量为:

    其中:k为安全系数;Vb为蓄电池充电电压;Vd为防反充二极管及线路等的压降。

    3.8 最终决定最佳搭配

    改变蓄电池维持天数n,重复以上计算,可得到一系列B-P组合。再根据产品型号及单价等因素,进行经济核算,最后决定蓄电池及光伏方阵容量的最佳组合。

    3.9 编制计算机程序
  我们根据以上原理及公式,用VC++语言编写了相应的计算机程序,可以很方便地确定太阳电池组件功率及蓄电池的容量。

  4 计算实例

  为上海地区设计一套光伏电源系统,每天平均用电量为5 kWh,工作电压为110 V。查得上海地区20 a以上的水平面上月平均太阳总辐照量和直接辐照量,∮=31.17°,相应参数分别取:ρ=0.2,η1=η2=0.9,DOD=0.8,k=1.15,设不同的蓄电池维持天数n,输入计算机程序,可以得到一系列组合如表1。


    最后根据上海地区的连阴雨天数等因素综合考虑,方阵倾角取43°,蓄电池容量用450Ah/110V,太阳电池方阵功率为2430 Wp,用27块90Wp组件9串3并组成。

  5 结 论

  独立光伏系统必须进行最优化设计,综合考虑其可靠性和经济性指标,最终确定最佳的太阳电池方阵和蓄电池容量组合。

  计算倾斜面上月平均太阳辐照量,可采用Klien和Theilacker提出的计算方法。

  方阵的最佳倾角按照负载的性质、当地的气象及地理条件以及满足蓄电池维持天数等条件的不同而改变,可以通过比较不同角度时满足负载要求的最小容量配置来确定。通常对于不同的蓄电池维持天数,其方阵的最佳倾角不一定相同。

  一般情况下,温度对于光伏方阵工作的影响可以不必考虑。

索比光伏网 https://news.solarbe.com/200808/18/2706.html

责任编辑:solarbe太阳能网资讯中心
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
ACS Nano:晶界能带反转策略实现了宽带隙钙钛矿太阳能高效率与环境制备的兼容性来源:知光谷 发布时间:2025-12-11 11:53:50

为此,我们提出了一种晶界能带反转策略,采用二丁基二硫代氨基甲酸铅作为界面钝化剂,同时实现了对1.68eV宽带隙钙钛矿薄膜的缺陷钝化以及晶界与晶粒间能带弯曲方向的反转。结合对空位缺陷的钝化作用,基于该策略的倒置结构器件实现了22.2%的功率转换效率,是目前空气中制备的1.68eV宽带隙钙钛矿电池中最高效率之一。本研究通过晶界能带反转策略,成功实现了高效率与环境制备的兼容性,推动了钙钛矿光伏技术的产业化进程。

Nat Commun:效率突破30%!复合中间复合层的高效钙钛矿/Cu(In,Ga)Se₂串联太阳能电池来源:知光谷 发布时间:2025-12-11 11:48:07

单片钙钛矿/CuSe串联太阳能电池在串联构型中具有独特优势,包括理想的带隙配对、全薄膜结构、优异的抗辐射能力和出色的稳定性。这项工作使单片钙钛矿/CIGS串联电池与领先的钙钛矿/硅和钙钛矿/钙钛矿技术相媲美,为下一代光伏技术提供了可扩展、多功能的框架。研究亮点:效率突破:研制出效率超过30%的单片钙钛矿/CIGS串联太阳能电池,创造了该体系的新纪录,显著缩小了与钙钛矿/硅串联电池的效率差距。

不争先的高景太阳能,徐志群称“老年得子”来源:PV光圈见闻 发布时间:2025-12-11 10:28:56

12月10日,高景太阳能在广州举办BC生态大会,并高调庆祝公司成立五周年。高景太阳能董事长徐志群首次分享了高景是如何在光伏产业不争一时先后,而争“滔滔不绝”。他回忆起五年前成立高景太阳能,在珠海签约时的心情,称可以用“老年得子”来形容。高景太阳能成立于2019年7月,短短五年,成长为国内一线硅片龙头企业。截至2024年12月,高景太阳能硅片出货量达150GW,居于全球第三。徐志群在五周年大会上表示,感谢爱旭股份。

东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。