PCE。1. 研究背景与挑战钙钛矿太阳能电池(PSCs)作为新兴光伏材料,功率转换效率(PCE)快速提升,但溶液法制备的钙钛矿薄膜存在结构缺陷(如空位、间隙、取代缺陷),导致离子迁移、复合损失
蒸发,厚度 100 nm(图案化)。注:两种结构的制备过程中,仅 CY 的有无为变量,其他步骤(如清洗、旋涂参数、退火条件)严格一致。图文信息图 1. CY 的化学结构及 CY 对钙钛矿薄膜可能的局域
,实现 WBG 薄膜出色的卤化物均匀性和精确的结晶控制。NCNT
同时诱导 p 型掺杂并降低钙钛矿/C60 界面能垒,显着增强电荷提取。值得注意的是,通过这种方法制造的 1.68 eV WBG
了一种纳米晶-核模板 (NCNT) 策略,通过精确匹配纳米晶体的 I/Br 比与目标钙钛矿薄膜的 I/Br
比,直接解决异质成核——相分离的根本原因。这种方法指导 Pb-I/Br 八面体的均质组装
)对聚 (P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电子,促进其 p 型掺杂。与对照 P3CT 相比,掺杂后的 P3CT-TBB 薄膜电导率提升约 10 倍。因此
选择层。非对称结构的引入显著增强了SAM的锚定能力,原位提升了SAM在硅绒面衬底的覆盖率及均匀性,优化了界面能级匹配。同时,HTL201与钙钛矿之间的强相互作用促进了高品质钙钛矿薄膜的沉积,并有效钝化
/博导李望南介绍称该薄膜状电池,采用钙钛矿型的有机金属卤化物半导体作为吸光材料,它像喷漆一样,可以被喷涂于各类物品表面,在吸收太阳光后,直接将光能转化为电能。李望南希望依托襄阳蓬勃发展的汽车产业,重点布局
大面积器件重复性。n 型 SAM 研究:开发萘胺、富勒烯基 SAM,拓展至 n-i-p 电池。图文信息图 1. 自组装单层(SAM)分子结构及基于 SAM 的钙钛矿太阳能电池(PSCs)掩埋界面关键问题
₃&D-PEABr)。b) 对照组、ST-Al₂O₃、D-PEABr 和 ST-Al₂O₃&D-PEABr 薄膜在
98±1% 湿度下老化 5 天的光学图像。c) 钙钛矿溶液在 ITO
在不同SAMs上的钙钛矿薄膜的PL光谱及(C) TRPL衰减曲线。(D) 通过UPS测试获得的不同ITO/SAM表面与钙钛矿薄膜的能级分布。(E) SAMs在空穴传输界面作用机制示意图
,大力发展“一主三翼”技术路线,重磅发了多款最新N型技术产品。本次发布的创新产品中,26.8%效率的2.82㎡TSiP2.0钙钛矿/TOPCon四端叠层巨幕组件尤为瞩目,这是一道新能与钙钛矿领域龙头企业
析了绒面晶硅上制备钙钛矿薄膜的三条技术路线,主流钙钛矿制备方法与面临的问题,并重点解析了钙钛矿晶硅叠层技术量产的绒面调控和硅片线痕等要点。欧阳子强调,晶澳在晶硅技术上的积累,为叠层技术提供了良好的基础
分子冠醚诱导合成制备得到一种全新的物质晶体相——“超分子杂化晶体”,解析并确定其晶体结构,并予以命名;3.
构建了一种崭新的“自组织图灵结构”的钙钛矿薄膜;4.
揭示并首次提出该光吸收拓展背后的
单晶样品、确认了晶体结构并予以命名,获得的剑桥晶体学数据库(CCDC)的编号为2305945(图2)。图3.
自组织图灵结构的钙钛矿薄膜。同时,作者通过SEM和HRTEM观察所制备的钙钛矿薄膜发现