虽然更紧密的异质界面有利于单线态激子解离,但也可能增加复合概率。香港科技大学广州吴佳莹、香港理工大学李明杰和马睿杰等人通过光物理分析发现,选用极化率较低的小分子填充这些界面,可在保持激子离域的同时,增强短程迁移率,从而抑制亚纳秒双分子复合损失。
实验室小面积钙钛矿太阳能电池(PSCs)的效率虽已接近27%,但大面积器件的均匀性和长期稳定性仍是产业化的关键瓶颈。传统自组装单分子层(SAMs)材料难以同时满足高效电荷传输、高稳定性和大面积加工的
需求。近日,中科院长春应化所秦川江、王利祥团队与隆基中央研究院合作,在《Science》发表突破性研究。他们创新性地设计出两种开壳层双自由基有机分子(RS-1和RS-2),成功解决了上述难题,并创下
一种全新的局域相位调制异质结构,它能够对 PSCs
产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。这种局域相位调制异质结构 PSCs 实现了
,限制性能与稳定性。现有异质结基 PSCs 多仅使用少量有机半导体添加剂,难以同时优化缺陷钝化和电荷提取。2. 研究方法与核心设计新型有机半导体 CY 的开发结构:U 型不对称 Lewis 碱有机半导体,含
&Bo He研究背景钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)已突破26.5%,逐步逼近最先进的晶体硅太阳能电池水平。在反式钙钛矿电池性能提升过程中,有机空穴选择性自组装分子(SAMs)发挥
传统小分子或聚合物空穴传输层的导电性。但迄今为止,具有双自由基特性的SAMs仍鲜有报道。如何设计出在PSCs中稳定高效工作、同时确保大面积均匀成膜的双自由基SAMs,仍是亟待突破的难题。此外,当前仍缺乏
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能
。科研团队通过精确调控分子结构,实现了受体的3D结构,这种结构不仅提高了光吸收和电荷传输效率,还有助于减少电池的电压损失。研究意义:性能提升:这项工作提供了一种通过分子设计来提高有机太阳能电池效率和减少
Nature、Science、Cell等顶尖期刊。得益于计算硬件的指数级发展,基于ML-FFs实现第一性原理精度的大规模分子模拟已成为现实。机器学习方法不仅拓展了传统分子模拟的时空尺度,更揭示了诸如小
,抑制裂纹扩展速度,并减少了界面机械不匹配现象。最终,在小面积柔性器件上实现了19.58%的PCE,这是迄今为止柔性有机太阳能电池(f-OSCs)中最高的PCE之一。值得注意的是,可拉伸器件在100
文章介绍可拉伸有机太阳能电池(s-OSCs)的发展需要在机械顺应性和电学性能方面实现同步突破,其挑战根源在于有机半导体与金属电极之间固有的机械不匹配。基于此,南昌大学陈义旺等人提出了一种双相界面工程
粘度随剪切速率变化;而刀片涂覆的小分子HTL则因分子聚集和低粘度问题,易出现不利的组装行为和溶质随机分布。鉴于此。四川大学李鸿祥和苏州大学李耀文等人设计了一种高迁移率无掺杂小分子BDT-MB,并通过与
作为空穴选择性接触的有机分子——自组装单分子层(SAMs),在确保高性能钙钛矿光伏器件中起着关键作用。SAM与钙钛矿之间的最佳能级对齐对于理想的光伏性能至关重要。然而,许多SAMs是在最佳带隙钙钛矿
突破——如何在扩大电池面积的同时保持高效率和长期稳定性?清华大学团队近日在《Advanced
Materials》发表重磅研究,通过引入一种多功能有机小分子BNCl,成功制备出面积达12cm
²、效率达22.81%的PSC模组,同时小面积单体效率高达25.04%(权威认证),稳定性也创历史新高!突破难点:大面积制备为什么这么难?在实验室中实现26%以上效率的钙钛矿电池并不难,但这些通常是小面积