刻划P1线,得到50 μm的刻划宽度;2. 洗净的ITO臭氧30min,溅射20nm NiOx; 采用化学浴法制备SAM,将ITO基片浸入含0.3mmol L-1SAM的EtOH溶液中。10min
战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM
和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
SAM 中以形成共 SAM,从而提高均一性并减轻NiOx 缺陷表面。同时,离子液体(IL)单体
1-烯丙基-3-乙烯基咪唑鎓双((三氟甲基)磺酰基)酰亚胺(AVMTF)2)掺入钙钛矿前驱体中。ILs
揭示了常用的自组装单层(SAM)-型HTL具有差的UV稳定性,这会对空穴提取造成不可逆的损害并损害器件稳定性。为了解决这个问题,作者开发了一种名为Poly-2PACz的聚合物和紫外线稳定HTL,与
SAM型HTL相比,Poly-2PACz
HTL具有与基质的强结合力和优异的抗紫外线性能。在环境条件下,使用Poly-2PACz
HTL的PSC刮涂实现了26.0%的显着效率和出色的紫外线稳定性
PVKITO/NiOx/SAM/PVK/C60/BCP/Ag1.洗干净的ITO,20 mg/mL NiOx H2O,3000rpm
30s旋涂,130℃退火30 min;参比:0.3 mg/mL
TSCsITO/NiOx/SAM/WBG PVK/C60/SnO2/Au/PEDOT/NBG PVK/ EDAI2/C60 / BCP/Ag1. HTL、WBG
PVK、C60制备如上;ALD 40
。宽带隙亚电池中NiOx与自组装单分子层(SAMs)之间的界面接触限制了TSC的效率和稳定性。在普通的强酸性磷酸自组装单分子层(PA-SAM)中,强酸性磷酸(PA)锚定会腐蚀活性NiOx,影响器件的
稳定性。此外,SAM聚集会导致界面损失和开路电压(VOC)损失。为了解决这一问题,中国科学院宁波材料技术与工程研究所葛子义研究员和刘畅研究员等人在前期钙钛矿太阳能电池研究的基础上,开发了一种创新策略,可以
文章介绍自组装单分子膜(SAM)倒置钙钛矿太阳能电池因其高效率和长期运行稳定性而受到广泛关注,但SAMs/钙钛矿界面处的空穴提取效率通常低于电子提取效率。基于此,南京工业大学陈永华等人报道了通过使用
ImHI-pero器件的TPV特性。c)
Control-pero、MorHI-pero、PyHI-pero和ImHI-pero的PL特性,其结构为玻璃/SAM/钙钛矿。d)
Control-pero
文章介绍反式钙钛矿太阳能电池(PSCs)在自组装分子(SAMs)技术进步的推动下取得了快速的发展。然而,实现基底上均匀的SAM覆盖仍然是一个挑战,这直接影响着器件的性能和稳定性。基于此,南开大学姜源
植等人介绍了一种具有刚性芳香环结构的SAM—4-(芘-1-基)苯基膦酸(PhPAPy)。分子动力学(AIMD)模拟表明,这种刚性限制了分子的旋转自由度,从而促进了分子在基底上近乎垂直的取向。此外,平面
用作空穴选择性触点的有机分子,称为自组装单层 (SAM),在确保高性能钙钛矿光伏方面发挥着关键作用。SAM 和钙钛矿之间的最佳能量对准对于所需的光伏性能至关重要。然而,许多 SAM 是在最佳带隙
,分别由非辐射复合和异质结界面的降解引起。本文佛山仙湖实验室Mathias Uller
Rothmann、福建农林大学杨宁和欧阳新华、武汉理工大学李伟等人开发了一种新型自组装单分子层(SAM)材料
——4-(11H-苯并咔唑-11-基)丁基(4-PhCz),通过增强SAM在氧化铟锡(ITO)上的覆盖率和SAM与钙钛矿的相互作用,双面强化界面。基于1.67
eV带隙的钙钛矿太阳能电池(PSC
作为空穴选择性接触的有机分子——自组装单分子层(SAMs),在确保高性能钙钛矿光伏器件中起着关键作用。SAM与钙钛矿之间的最佳能级对齐对于理想的光伏性能至关重要。然而,许多SAMs是在最佳带隙钙钛矿
”,在此,本文证明SAMs的能级可以通过共轭部分的诱导效应进行逐步系统调谐,从而能够针对特定钙钛矿带隙进行合理设计。基于调谐后的SAM的宽带隙钙钛矿器件实现了22.8%的功率转换效率(PCE)。与