窄带隙子电池中空穴传输层与钙钛矿界面处的非辐射复合损失限制了全钙钛矿叠层太阳能电池的光电转换效率。此外,该策略有效缓解了叠层器件互联层引起的接触损失,最终实现全钙钛矿叠层电池的30.6%效率。全钙钛矿叠层电池认证效率突破30%大关,具备产业化前景:叠层电池认证稳态效率达30.1%与29.6%,具备良好的重复性与操作稳定性,是当前全钙钛矿叠层电池的最高效率之一。
此外,该偶极钝化有效减轻了由叠层器件连接层引起的窄带隙子电池中的接触损失,使得全钙钛矿叠层太阳能电池实现了30.6%的卓越PCE。因此,保留PEDOT:PSS作为HTL以减轻这些Voc和FF损失。当旋涂速度达到最大值时,将50μl处理液滴加到钙钛矿薄膜上。
金属卤化物钙钛矿因其卓越的光电性能,已成为推动光伏效率进步的有力竞争者。本研究上海交通大学赵一新、陈悦天、郭永胜和缪炎峰等人提出了一种“SAM-in-matrix”策略,将部分SAM分散于稳定的三硼烷基质中,有效打破了原有分子堆叠导致的聚集现象。推动钙钛矿组件迈向平方米级产业化:成功制备出1米×2米大面积组件,认证效率突破20%,是目前公开报道中最大面积、最高效率的钙钛矿光伏组件之一,具备明确的产业化前景。
目前,制约全钙钛矿叠层电池效率的关键在于,窄带隙钙钛矿子电池在高短路电流密度输出的条件下,无法同时实现较高的开路电压和填充因子。仁烁光能致力于全钙钛矿叠层太阳能电池的研发与产业化,拥有全球首条全钙钛矿叠层研发线。在产业化推进方面,仁烁光能已初步形成系统化解决方案,30cm×40cm全钙钛矿叠层研发组件效率突破26%。2025年,仁烁光能全钙钛矿叠层组件获得第50届日内瓦国际发明展特别嘉许金奖。
鉴于此,2025年10月27日南京大学林仁兴&谭海仁&军事科学院国防科技创新研究院常超和北理工徐健于Nature刊发具有偶极钝化的全钙钛矿叠层太阳能电池的研究成果,开发了一种偶极钝化策略,该策略可降低混合锡铅处的陷阱密度,同时实现空穴传输层/钙钛矿界面处能级的精确对准。此外,偶极钝化有效地降低了串联器件互连层在窄带隙子电池中引起的接触损耗,使全钙钛矿叠层能电池的效率达到30.6%。
研究意义提出自引导晶体生长新机制:通过中间相实现晶面定向控制,为蒸发法制备高质量钙钛矿提供新路径。结论展望本研究通过中间相演化诱导的自引导晶体生长策略,成功实现了高效、稳定、高度取向的蒸发宽带隙钙钛矿太阳电池,效率突破21%,推算寿命达7万小时,并成功应用于效率超过29%的钙钛矿-硅叠层器件。
高效的宽禁带钙钛矿太阳能电池将叠层效率提高到34.9%,加强了下一代光伏电池的前景。然而,它们的商业应用受到宽带隙钙钛矿稳定性问题的阻碍,特别是在高温最大功率点跟踪条件下。鉴于此,2025年10月22日北京工业大学卢岳&新加坡国立大学侯毅于NatureMaterials刊发稳定定向蒸发宽带隙钙钛矿太阳能电池的中间相演化的研究成果,报道了~1.7eV宽带隙钙钛矿通过中间相演化的稳定性,实现了自导向晶体生长模式。
锡基钙钛矿太阳能电池作为一种前景广阔的无铅、环境友好型光伏器件,其倒置结构认证效率已超过16%。基于此,倒置小面积TPSCs实现了17.89%的记录效率,封装器件在1344小时环境储存后仍保持95%以上初始效率,在1550小时连续光照运行后仍保持94%以上。此外,1cm大面积TPSCs效率达14.40%,创下新纪录,凸显了该策略的可扩展性。大面积器件性能突破:1cmTPSCs效率达14.40%,展示出优异的可扩展性与均匀性,推动锡基钙钛矿电池走向实用化。
图c的等温转化图通过Johnson-Mehl-Avrami方程拟合,定量提取的速率常数k值依次减小,证实层状钙钛矿的掺入显著降低了立方相的成核和/或生长速率。结论展望本研究通过层状钙钛矿模板诱导的固相异质外延策略,突破了FAPbI相转变动力学难调控与传统外延衬底依赖的瓶颈,实现了高质量α-FAPbI薄膜的低成本、可规模化制备。
空穴选择性自组装单分子层在将反式钙钛矿太阳能电池的认证功率转换效率提高到26.7%方面发挥了关键作用。鉴于此,香港城市大学AlexK.-Y.Jen,中国科学院深圳先进技术研究院张杰,岭南大学吳聖釩,吉林大学蒋青团队在期刊《Nature》发文“Toughenedself-assembledmonolayersfordurableperovskitesolarcells”采用可交联的co-SAM来增强空穴选择性SAM对抗外部应力的构象稳定性,同时抑制自组装过程中SAM中缺陷和空隙的形成。