上海交通大学缪炎峰、陈悦天、赵一新与宁德时代郭永胜Nature:基质限域分子层用于钙钛矿光伏模组

来源:先进光伏发布时间:2025-10-29 09:09:34

图片

论文概览

金属卤化物钙钛矿因其卓越的光电性能,已成为推动光伏效率提升的有力候选材料。随着研究电池的光电转换效率(PCE)接近商业化硅太阳能电池,钙钛矿太阳能电池(PSCs)的工业化即将到来。然而,采用自组装分子(SAMs)的高效反向钙钛矿太阳能电池面临着聚集性和疏水性等挑战。我们提出了一种“SAM-in-matrix”策略,将部分SAM分子分布在三氟苯基硼的稳定基质中,有效避免了分子堆积引起的聚集。2D格点蒙特卡洛模拟和实验结果表明,该策略能够形成高效的电荷传输通道。基于SAM-in-matrix的孔传输层(HTL)器件在多种SAM材料下展示了更高的效率,具有紧凑的表面覆盖、良好的导电性和显著减少的埋藏纳米空隙。此外,该策略具有良好的可扩展性。采用SAM-in-matrix HTL的FTO/NiOx基板有助于形成高质量的大面积钙钛矿薄膜,并提高NiOx的导电性,从而实现了1 m × 2 m大面积钙钛矿太阳能模块,认证效率达到20.05%。

技术亮点

1.SAM-in-Matrix策略提升电荷传输:该研究提出了一种新的“SAM-in-matrix”方法,将自组装单分子层(SAMs)嵌入稳定的基质(三氟苯基硼酸,BCF)中。此策略防止了分子堆积聚集,确保通过形成有效的孔传输通道来实现高效的电荷传输,从而提高了设备的性能。

2.高效率的大面积钙钛矿太阳能电池:通过将SAM-in-matrix孔传输层(HTL)应用于大面积钙钛矿模块,研究实现了1米×2米钙钛矿太阳能模块的认证功率转换效率(PCE)为20.05%。这种可扩展性对于商业化生产至关重要,且展示了大面积薄膜的优秀重复性和均匀性。

3.提升设备稳定性与性能:使用Me4PA@BCF HTL显著提高了钙钛矿器件的稳定性。与传统的SAM基HTL设备相比,这些器件在连续操作1600小时后仍保持93.6%的初始PCE,显示出卓越的长期稳定性。

深度解析

Me4PA@BCF传输层(HTL)的构建

图片

Me4PA@BCF空穴传输层(HTL)的构建研究揭示了自组装单分子层(SAMs)分子堆积和结晶是导致SAMs聚集不均匀和界面稳定性差的主要原因。通过引入三氟苯基硼酸(BCF)作为基质,Me4PA分子在BCF基质中得到了有效分散,防止了堆积和聚集,改善了空穴传输路径。X射线衍射(XRD)和2D倾斜入射广角X射线散射(GIWAXS)结果表明,Me4PA在BCF中的堆积被有效抑制,形成了无定形结构。进一步的模拟和实验数据表明,Me4PA和BCF的相互作用提高了BCF的电导率,并增强了孔的传输效率。通过模拟和实验验证,即使在较低的Me4PA浓度下,Me4PA@BCF层也表现出显著的电导性和高效的电荷传输能力。此外,Me4PA@BCF孔传输层能够提供良好的界面接触,减少了FTO/钙钛矿Schottky接触的非辐射复合,有助于提高器件效率、可扩展性和可重复性。这种基质策略不仅适用于Me4PA,还能扩展到其他常用SAMs,从而提高倒置型钙钛矿太阳能电池(PSC)的性能和稳定性。

沉积在Me4PA@BCF HTL的钙钛矿

图片

在Me4PA@BCF空穴传输层(HTL)上生长的钙钛矿薄膜显示出更好的质量,较大的晶粒尺寸以及更紧密的界面接触。相比于传统的SAM,使用Me4PA@BCF HTL的薄膜在GIWAXS和X射线衍射(GIXRD)图案中表现出更强的衍射强度和更窄的方位角强度谱,证明了其更优的结晶质量。此外,通过空间电荷限制电流(SCLC)测量,Me4PA@BCF基钙钛矿薄膜显示出较低的陷阱密度(4.91×10¹⁵ cm⁻³),这有助于减少界面非辐射复合。基于此薄膜构建的倒置型钙钛矿太阳能电池(PSC)显示出26.11%的功率转换效率(PCE),以及较高的开路电压(Voc 1.171 V)、短路电流密度(Jsc 26.43 mA cm⁻²)和填充因子(FF 84.34%)。相较于Me4PA基器件,Me4PA@BCF器件的所有参数均有所提高,且表现出微弱的滞后现象和较高的重复性。这些改进归因于界面复合的减少,进一步通过外量子效率电致发光(EQEEL)测试得到证实。最终,这些提升的界面特性使得Me4PA@BCF基钙钛矿器件具有更长的载流子寿命和更优的载流子传输性能。

规模化制备钙钛矿膜

图片

在大面积钙钛矿太阳能模块的规模化制备中,使用溅射NiOx薄膜作为FTO基底已被认为是技术上更适合大规模生产的选择。然而,单独使用NiOx空穴传输层(HTL)的设备效率通常有限,因此与其他功能分子合作能更有效地提升性能。研究中,Me4PA和Me4PA@BCF HTL被沉积在溅射NiOx基底上,以提高大面积钙钛矿薄膜的覆盖性和润湿性。实验结果表明,Me4PA@BCF处理在NiOx基底上的薄膜覆盖更均匀,且与钙钛矿的界面接触更紧密,减少了界面空洞。此外,Me4PA@BCF薄膜的热稳定性优于Me4PA薄膜,经过150小时100℃的热老化后,Me4PA@BCF基器件保持了93.6%的初始PCE,而Me4PA基器件下降至72.3%。这表明Me4PA@BCF HTL能够有效提高器件的长期稳定性和热稳定性。进一步的XPS和紫外光电子能谱(UPS)分析表明,Me4PA@BCF修饰能够改善NiOx的导电性和电子空穴传输性能,有助于提升器件的效率和稳定性,证明了该策略在大面积太阳能模块中的应用前景。

大面积模组

图片

在大面积钙钛矿太阳能模块的制备中,Me4PA@BCF空穴传输层(HTL)显示了优异的均匀性和性能。通过对5 cm × 5 cm钙钛矿薄膜的光致发光(PL)映射和紫外-可见吸收光谱的分析,发现Me4PA@BCF基薄膜的PL强度更高且分布更均匀,表现出更好的效率和更高的重复性。进一步将此技术应用于30 cm × 30 cm的大面积薄膜,结果显示Me4PA@BCF基膜具有更均匀的PL分布,预示着其在大面积高效太阳能模块中的应用潜力。最终,在1 m × 2 m的大型模块中,Me4PA@BCF HTL实现了20.05%的认证功率转换效率(PCE),而Me4PA基模块的PCE仅为17.39%。这表明,Me4PA@BCF HTL在大规模钙钛矿太阳能模块的高效、稳定生产中具有广阔的应用前景。

总结与展望

本研究提出了一种创新的"SAM-in-matrix"孔传输层(HTL)策略,通过将自组装分子(SAM)分散到稳定的三氟苯基硼酸(BCF)基质中,成功解决了传统SAM分子堆积问题,显著提升了钙钛矿太阳能电池(PSC)的光电性能和稳定性。与传统的SAM HTL相比,Me4PA@BCF基孔传输层表现出了更优的电导性、更均匀的薄膜覆盖性及更低的界面复合损失,推动了大面积钙钛矿太阳能模块的高效制造,且1 m × 2 m的大面积模块达到20.05%的认证功率转换效率(PCE)。此外,该策略对钙钛矿太阳能模块的稳定性也有显著提升,Me4PA@BCF基器件在高温和长时间操作下表现出更好的耐久性。展望未来,"SAM-in-matrix"策略不仅为小面积的钙钛矿太阳能电池提供了高效稳定的解决方案,也为大规模、商业化生产提供了理论支持和技术路径。随着技术的进一步优化,该策略有望在可再生能源领域取得更广泛的应用,推动钙钛矿太阳能电池向更高效率和更长使用寿命的发展方向迈进。

文献来源

Liang, Y., Chen, G., Wang, Y. et al. A matrix-confined molecular layer for perovskite photovoltaic modules. Nature (2025).

https://doi.org/10.1038/s41586-025-09785-3仅用于学术分享,如有侵权,请联系删除。


索比光伏网 https://news.solarbe.com/202510/29/50011310.html
责任编辑:周末
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
国内首个!东方电气钙钛矿-晶硅两端叠层光伏电站投运来源:钙钛矿材料和器件 发布时间:2025-12-26 14:54:41

近日,东方电气集团所属东长研究院、东方光能联合攻关打造的5千瓦钙钛矿-晶硅两端叠层光伏户外实证示范电站在甘肃酒泉正式投运,标志着我国新一代高效光伏技术从实验室研发阶段向户外规模化实证示范实现关键突破。

推出首款钙钛矿光伏摄像头! 脉络能源与镭威视签署战略合作协议来源:脉络能源 发布时间:2025-12-26 10:32:29

2025年12月24日,广东脉络能源科技有限公司(以下简称“脉络能源”)与广州镭威视安防科技有限公司(以下简称“镭威视”)正式签署战略合作协议,推出首款钙钛矿光伏摄像头。此次合作是脉络能源践行绿色低碳发展战略、推动钙钛矿光伏技术与安防领域创新融合的重要举措,将为智慧能源注入新动能。

全国首个大尺寸钙钛矿建筑一体化光伏示范项目并网发电来源:钙钛矿工厂 发布时间:2025-12-26 10:26:15

12月25日,全国首个大尺寸钙钛矿建筑一体化光伏示范项目——昆山城市广场连廊分布式光伏发电项目正式并网发电,这一里程碑式突破标志着我国大尺寸钙钛矿光伏技术在建筑一体化领域实现规模化应用。

东方电气首个千瓦级钙钛矿/晶硅两端叠层光伏户外实证示范电站投运来源:钙钛矿工厂 发布时间:2025-12-25 09:47:45

近日,东方电气集团所属东方光能、东长研究院联合攻关打造的5千瓦钙钛矿-晶硅两端叠层光伏户外实证示范电站在甘肃酒泉正式投运,标志着我国新一代高效光伏技术从实验室研发阶段向户外规模化实证示范实现关键突破。针对钙钛矿材料的高温敏感性,团队采用了适配叠层电池的低温串焊与封装技术,有效降低热应力对钙钛矿层的损伤,成功研制出2384毫米×1303毫米钙钛矿-晶硅两端叠层光伏组件,实现从研发向工程示范的跨越。

钙钛矿组件赋能!全国首个宁德时代“光储充换检收放”七合一全生态超级充换电站竣工!来源:钙钛矿工厂 发布时间:2025-12-25 08:49:22

12月19日,由江苏时代宁电新能源科技有限公司主导建设的全国首家宁德时代授权的“光储充换检收放”于一体的七合一全生态超级充换电站,在南京市玄武区正式竣工揭牌。

Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

该光伏企业大幅面钙钛矿激光刻蚀设备顺利交付!来源:钙钛矿工厂 发布时间:2025-12-24 08:42:58

2025年12月22日,元禄光电自主研发的大幅面钙钛矿全自动产线激光刻蚀设备顺利完成出厂调试,正式交付国内某头部光伏企业。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。